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Abstract

A significant increase of intrusion events over the years imposes a
challenge on the robust intrusion detection system. In a computer sys-
tem, execution traces of its programs can be audited as sequences of
system calls and provide a rich and expressive source of data to identify
anomalous activities. This paper presents a deep learning model, which
combines multi-channel CNN and bidirectional LSTM (BiLSTM) models,
to detect abnormal executions in host-based intrusion detection systems.
Multi-channel CNN with word embedding can in large extent be used to
extract relationship features of system calls. Meanwhile, BiLSTM enables
our model to understand the context of system call sequences thanks to
capturing long-distance dependencies across the sequences. The integra-
tion of these two models leads to the efficient and effective detection
of abnormal behaviors of a system. Experiment results on ADFA-LD
dataset show that our approach outperforms other methods.

Key words: Intrusion detection, ADFA-LD dataset, multi-channel CNN, BiLSTM.
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1 Introduction

In recent years, attacks on organization computer systems are increasing in
volume, severity, and duration. In such scenarios, intrusion detection plays
a critical role in preventing malicious activities on the systems. An intrusion
detection system (IDS) can effectively discriminate between malicious and be-
nign system activities. Different types of IDS are defined based on the scope
of intrusion monitoring and methodological approaches.

According to the scope of intrusion monitoring, there are two types of IDS
namely host-based and network-based systems. The network-based intrusion
detection systems monitor network traffic between hosts to protect the system
from network threats. This type of IDS collects information from network
packets and analyses the content in order to detect malicious activities from
the network. Meanwhile, host-based detection systems monitor the activities
on a single system. It analyses collected information from the host system like
event logs or system logs in order to identify vulnerability exploits against a
target software or a computer system.

Depending on methodological approaches, IDS can be classified into signature-
based and anomaly-based. Signature-based approaches operate by matching
captured behaviors against known intrusion patterns. This approach is very
accurate (no false alarm) but cannot detect unknown patterns. On the other
hand, the anomaly-based approach can learn from existing knowledge to differ-
entiate abnormal and normal behaviors. Thus, it can potentially detect unseen
and novel intrusions. However, it may result in higher false alarm rates.

In this work, we focus on anomaly detection in host-based IDS. One im-
portant approach in detecting host-based intrusion exploits the sequences of
system calls recorded during the executions of processes in the system. These
sequences can be fed into a learning model as features so that malicious be-
haviors of processes can be recognized. However, these sequences differ from
each other in their lengths (depending on running processes), execution con-
texts and orders when calling system API. These differences lead to difficulties
in developing learning models that predict and classify malicious processes.
This is similar to the case of a sequence of words in a text sentence, which
may have word-level features, phrase-level features, and context features of the
sequence/sentence. It is difficult to identify all of them simultaneously.

Previous works of anomaly-based host intrusion detection methods have
been focused on the feature engineering approach. This approach tries to iden-
tify meaningful features manually, therefore, it is hard to capture many useful
features of system call sequences. In recent years, deep learning has achieved re-
markable success in many applications like natural language processing (NLP),
image processing, etc. Due to the similar formation between a sequence of
system calls in a trace and a sequence of words in a sentence, recent works
like [10] used deep neural language models to detect anomaly sequences of sys-
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tem calls. They consider system call sequences as instances of the language
for communication between users (or programs) and the system. In this view,
system calls and their sequences correspond to words and sentences in natu-
ral languages. This deep neural language model based approach has shown
significant improvement in detecting abnormal activities.

Motivated by the deep neural language model based approach, this work
formalizes traces of system calls during process executions as natural sentences
and constructs deep learning models to improve the performance of intrusion
detection. In particular, the proposed approach utilizes the technique of word
embedding to represent the sequence of system calls and feed this output to
a deep learning model combining multi-channel CNN and bidirectional LSTM
(BiLSTM) to detect malicious activities of running processes. Multi-channel
CNN with word embedding can be used to extract system call relation features.
BiLSTM help to understand full context of system call sequences by capturing
long-distance dependency across the sequence in both left and right directions.
The integration of these two advanced models contributes to efficient and ef-
fective detection of abnormal behaviors in the system. The performance of the
proposed model is evaluated against ADFA-LD dataset [4]. Furthermore, the
paper investigates several deep learning models in the field to better illustrate
the performance of the proposed model.

2 Related Work

Previous works of detecting anomaly system call sequences have been focused
on the feature engineering approach with two major categories including short
sequence-based and frequency-based [6]. The authors of [7] propose a simple
method relied on sliding windows to extracts a fixed-size sequence of system
calls. Then, this sequence is used as a feature vector. This method is just
efficient to monitor short sequences of system calls but may not be capable
to handle against sufficiently long sequences. In [5], the authors construct a
semantic model (dictionary) for the short sequences in the forms of “word”
and “phrase”. Based on this dictionary, they evaluate hidden Markov model,
extreme learning machine, and one-class SVM algorithms. The results is rather
good with false positive rate of 15%, extreme learning machine obtains the
detection accuracy of 90% and one-class SVM algorithm of 80%. However, this
method is very time-consuming.

The paper [1] represents system call traces by sliding several n-grams of
variable length over the system call traces and computing the occurrences of
these n-grams in the traces. Therefore, the orders of system calls are main-
tained while providing novel features for classification models. ADFA dataset
has confirmed that 6-grams for representing the system traces grants the best
performance at a low level of false positive rate against other representations in-
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cluding term frequency, inverse document frequency, and sequences. Amongst
classifier models, one-class SVM model claims the best with the accuracy of
95% and the true positive rate of 87% at the low false positive rate of 5%.

Another work by Miao Xie et al. [17] applies the concept of frequency
of system call traces with one-class SVM but still suffers the bad performance
with the average accuracy of around 70%. In order to represent traces of system
calls as vectors, this paper combines Boolean model, where every system call
is counted for its existence in the traces of system calls, and Modified Vector
Space model, which can preserve the relative orders of system calls in the
traces by considering a sequence of system calls as a unique term instead of
a single system call. Furthermore, the modified vector model tackles with
the occurrences of a new sequence of system call during the testing phase by
including a system call whose number higher than any known one in the training
phase. Given the vector representation of traces, the paper has investigated
the performances of typical classifiers including Näıve Bayes, support vector
machine, k-mean, and decision tree. ADFA-LD dataset shows that increasing
term sizes improves the performance of SVM and Näıve Bayes models in both
accuracy and false positive rate. The average accuracy of the investigated
models is around 80%. Näıve Bayes model achieves the best with the false
positive rate at around 10%.

The authors of [12] improve a detection model, which employs a combined
first order Markov-Bayes algorithm, by applying domain knowledge, boost tech-
nique, and more complex and higher-order representation of Markov chains.
The proposed model has investigated by ADFA-WD dataset. Adding specific
knowledge of the system call traces as the whole system approach produces
the best performance of both models using boost technique and higher-order
Markov chain with accuracy ranging from 88% to 97% while F1 factor above
92%. But, these models suffer the high false alarm rate accounting for around
29%.

Recently, deep neural language model based approach has gained remark-
able results in detecting abnormal system call sequences as it can capture call-
level features, phrase-level features and context features in call sequence. The
paper [10] proposes an LSTM based language model-based method for detecting
abnormal programs running in computer systems. The model considers system
calls and their traces as basic elements of the language roughly correspond-
ing to words and bags of words created by the programs. The dependencies
amongst these elements are learned by LSTM so that the proposed model can
identify a malicious pattern of computer programs. The detection rate of the
model reaches 90%, which is comparable to existing models such as the hidden
Markov model, but rather low false alarm rate (at 16%). In [13], the author
uses RNN and GRU for intrusion detection and report a good detection rate
at 98.3%. In [2], Chawla et al. apply a similar concept using stacked CNN over
GRU and achieve better performance with AUC of 0.81.
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Our work also follows deep neural language model based approach to detect
abnormal traces. In particular, we combine multi-channel CNN and bidirec-
tional LSTM models because these two models are capable of capture more
useful features from sequences of system calls compared to the original models
including CNN and LSTM/GRU.

3 Background

3.1 Convolution Neural Network

Supposed that a sequence of system call of length is s, a matrix d x s has every
row that is a d-dimension word embedding vector of each system call (using
an embedding layer). Given a matrix S of these sequences, CNN performs
convolution on this matrix via linear filters, which is a weight matrix W of
length d and region size h. For an input matrix S ∈ R

d×s, a feature map
vector O = [o0, o1, ..., os−h] ∈ R

s−h+1 of the convolution operator with a filter
W is obtained by applying repeatedly W to sub-matrices of S :

oi = W · Si:i+h−1 (1)

where i = 0, 1, 2, . . . ,s-h; Si:j is the sub-matrix of S from row i to j.
Each feature map is then fed to a pooling layer to generate potential fea-

tures. This layer effectively combines several values into a single one and helps
to decrease the chance of over-fitting because those very particular are discarded
thanks to the pooling process. For example, max pooling uses the maximum
value from the feature maps to capture the most important feature v. Besides
that, max pooling is the most commonly used strategy.

v = max
0�i�s−h

{oi} (2)

In this work, we apply multiple filters with variant region sizes in order to
obtain multiple max pooling values. After pooling, these pooling values from
feature maps are concatenated into a CNN feature. To make a connection to
these values, a dense layer is deployed to synthesize a high-level feature from
the CNN features.

3.2 Long Short Term Memory model

The architecture of a recurrent neural network (RNN) is suitable for processing
sequential data. However, a simple RNN is usually difficult to train because
of the gradient vanishing problem [8]. In [9], the authors propose LSTM ar-
chitecture which utilizes a memory cell preserving its state over a long period
of time and non-linear gating units regulating information flow into and out
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of the cell. This cell let LSTM have ability to capture efficiently long-distance
dependencies of sequential data without suffering the exploding or vanishing
gradient problem. An advantage of LSTM over RNNs and other sequence
learning methods is relative insensitivity to gap length.

Sequences of system calls of variable length are transformed to fix-length
vectors by recursively applying a LSTM unit to each input call xt of a sequence
and the previous step ht−1. At each time step t, LSTM unit with l -memory
dimension defines 6 vectors in R

l: input gate it, forget gate ft, output gate ot,
tanh layer for input transformation ut, memory cell ct and hidden state ht as
follows:

Gates:

it = σ (Wixt + Uiht−1 + bi) (3)

ft = σ (Wfxt + Ufht−1 + bf) (4)

ot = σ (Woxt + Uoht−1 + bo) (5)

Input transformation:

ut = tanh (Wuxt + Uuht−1 + bu) (6)

State update:

ct = ft ⊗ ct−1 + it ⊗ ut (7)

ht = ot ⊗ tanh(ct) (8)

where xt is the input vector; W, U, b are layer parameters; σ is a sigmoid
function.

Intuitively, the forget gate makes a decision of which previous information
in the memory cell should be forgotten, while the input gate controls what new
information should be stored in the memory cell. And, the output gate decides
the amount of information from the internal memory cell should be exposed.
These gate units enable LSTM model to retain significant information over
multiple time steps.

In this paper, we adopt the bidirectional LSTM, which extends the tradi-
tional LSTMs in order to improve the performance on sequence classification
problems. For those problems where all time-steps of the input sequence are
available, the bidirectional LSTM trains two instead of one LSTM on the in-
put sequence. The first on the input sequence is trained as-is and the second
on a reversed copy of the same input. That can provide additional context
to the network and results in faster and even comprehensively learning on the
problem.
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4 Proposed Method

We assume that the host system generates a finite number of system calls dur-
ing its programs’ executions. Considering traces of system calls created by
executing computer programs as sentences of a document (where each system
call is a word), the problem of detecting intrusion can be viewed as the prob-
lem of classifying a sentence into normal or abnormal. This is similar to the
problem of sentiment classification into two classes: positive and negative, a
well-known problem in natural language processing (NLP). Modern approaches
to NLP often come with word embeddings, a vector representation technique,
to obtain the best performance. Thus, this work applies this technique to rep-
resent sequences of system calls by integrating a word embedding layer into
our proposed model. The vectors of these sequences are presented as input for
deep learning processing in the next stages of our model.

Figure 1: The proposed architecture

The deep learning processing combines a multi-channel CNN and BiLSTM
models. Given an input, CNN model can capture local dependencies between
neighbor words or system calls. However, because of the limitation of filter
length in CNN model, it is hard to learn all dependencies of the whole se-
quence. This can be tackled by using multi-channel CNN model [11] which
allow concatenating local relationship values.

LSTM model enables a cell to maintain information over a long period
of time. Therefore, a feature vector constructed by LSTM can carry overall
dependencies of the input vector. LSTM can capture the left context of the
input vector but bidirectional LSTM (BiLSTM) can even do more than that.
BiLSTM can process both of the left and right contexts to see how well an
element can fit in the input vector. The advantages of both multi-channel
CNN and BiLSTM can be combined to enhance the classification performance.

Figure 1 shows the architecture of the proposed model. Given a trace of
system calls, our proposed model generates word-embedding vectors via an



154 Combination of multi-chanel CNN and...

embedding layer. These embedding vectors are then fed to multi-channel CNN
model to create CNN feature vectors. Next, these CNN vectors are converted
into LSTM feature vectors thanks to BiLSTM layer. Finally, these LSTM
vectors are classified by a neural network. The proposed model can improve the
classification performance by capturing both local and global dependencies of
a sequence of system calls thanks to multi-channel CNN and BiLSTM models.
In training phase, the proposed model adopts rmsprop algorithm [14] to learn
model parameters.

In details, our multi-channel CNN derives that of [11] and consists of 4 con-
volution stacks with different filter lengths. Each stack consists of three layers
including one convolution, one dropout, and one max-pooling. Essentially, one
feature is extracted from one filter. Multiple filters with varying window size
are deployed in our model in order to acquire multiple features. These feature
vectors are merged together to form a single vector and passed to two convo-
lution layers with max-pooling. After these vectors are processed by BiLSTM
layer, the output vectors are supplied to a fully connected neural network layer
with softmax function so that these vectors are labeled with a probability dis-
tribution. The dropout technique can support regularisation and reduce the
over-fitting by avoiding training nodes on all training data. As a result, the
technique enables the network to learn more robust features. The convolutional
layer uses rectified linear unit (ReLU) as an activation function which applies a
non-linear operation to a feature map as replacing all negative values by zero.
ReLU function is preferable over other activation functions thanks to its better
performance in most situations.

Regarding multi-channel CNN, filter lengths of 4, 6, 8, and 10 are deployed.
The number of filters for all convolution layers are 128. The size of memory
cells used in BiLSTM stage accounts for 500. BiLSTM applies the dropout
technique with the recurrent dropout of 0.2. The dimension of the last layer of
the fully connected neural network is set to 128. In addition, the probability
of selecting units is at 0.5 for the dropout layer. The network in the proposed
model is trained using mini-batches having the size of each mini-batch of 50.
The negative log likelihood is minimized by rmsprop optimizer provided in
Keras with learning ratio of 0.01.

5 Experiment Evaluation

5.1 Dataset

ADFA-LD dataset [4] is used to examine the performance of our proposed
model. This is the most current and expressive dataset created by the Univer-
sity of New South Wales and contains execution traces in Linux environment
(Ubuntu 11.04) equipped with typical applications such as FTP, SSH, MySQL,
Apache, PHP and web-based tools. Ubuntu operating system is fully updated
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and the applications are started with default ports. This configuration rep-
resents a common working environment of a local server with some known
exposures. That is the system is likely to suffer several real types of exploita-
tions. The attacks being replicated in ADFA dataset, which are likely required
the intermediate hacking level, includes FTP Hydra, SSH Hydra, client-side
poisoned executable, Tiki Wiki vulnerability exploit, and PHP remote file in-
clusion vulnerability.

ADFA-LD aims for anomaly detection systems and constitutes three data
groups that are raw traces of system calls recorded during operations of the
environment. The traces’ sizes in training data are within 300 bytes and 6KB
while those of testing data are between 300 bytes and 10KB. There are about
800 and 4300 traces in training and testing data respectively. Meanwhile, the
attack data contains about 750 traces of abnormal executions. The overall
average length of all traces per system call in the dataset is about 460, which
is quite below that of testing data (485) and well above that of training and
attack data (369 and 425 correspondingly) as shown in Fig. 2.

Figure 2: Number of traces and average length per system call for ADFA-LD
dataset

5.2 Experimental Settings

5.2.1 Evaluation metrics

Overall accuracy is the simple measurement, which is often used in evaluat-
ing classification performance. This measurement accounts for the proportion
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between the correct classified elements and the total elements being classified.
However, due to the data imbalance among the classes required to be clas-
sified, this measurement is not really efficient and appropriate [15, 16]. In
this situation, the measurement metrics are composed of precision, recall and
F1 (harmonic mean). The precision presents the rate of correct classifica-
tion/prediction of a class, while the recall illustrates the rate of actual correct
classification/prediction. F1 presents the average of both precision and recall,
therefore, it facilitates the performance comparison among classification mod-
els.

These measurements are defined as following formulae:

Acc =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F 1 = 2× Precision × Recall

P recision + Recall
(12)

where TP (true positives): correct classifications of positive cases; FP (false
positives): incorrect classifications of positive cases into negative class; FN
(false negatives): incorrect classifications of negative cases into positive class.

In order to evaluate the performance of classification models, 10 folds cross-
validation is used in the experiment. This validation technique divides the
dataset into 10 parts such that 9 parts is employed for training and the last
one is for testing. This technique is repeatedly applied until all of 10 parts
are passed through the model. The measurements are computed by applying
average functions.

5.2.2 Parameters of the models

The deep neural network in our proposed model is built and trained by Keras
library [3] and its parameters are described in Section 3. Regards to LSTM
based model, CuDNNLSTM module is preferred in order to improve the exe-
cution speed of our proposed model. Because of the imbalance in the dataset,
our model applies weighted parameters to interested classes. This technique
assigns a weight value to the classes substantially having more instances than
the others in order to improve the classification performance. This technique
is facilitated by class weight parameter in Keras library [3].
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5.3 Evaluation

We compare our proposed model against the following models, namely CNN
without word embedding, multi-channel CNN, and BiLSTM. As shown in Table
1, the performance of our model claims the best with the scores of 97% for
every measurement and followed by a multi-channel CNN model and BiLSTM
model. This result also confirms that the combination of these two models can
improve the overall classification performance. Interestingly, the CNN model
is not far behind multi-channel CNN with the difference of about 1% in every
measurement. Furthermore, the recall of CNN is equally good as that of multi-
channel CNN.

Table 1: Experimental results on ADFA-LD dataset
Method Accuracy Precision Recall F1
One-class SVM [17] 0.7 - - -
RNN [13] 0.98 1.0 0.71 0.83
CNN without word embedding 0.88 0.86 0.87 0.87
CNN 0.94 0.94 0.94 0.94
Multi-channel CNN 0.95 0.96 0.94 0.95
BiLSTM 0.96 0.96 0.96 0.96
Our proposed 0.97 0.97 0.97 0.97

With respect to merely accuracy and precision, RNN model in [13] performs
the best with 98% and 100% respectively but the recall and F1 are rather low
(at 71% and 83% correspondingly) compared to the others. That means this
model suffers a high rate of incorrect classification of abnormal traces.

Existing models using traditional models [5, 1, 17] can achieve the top
accuracy of 95% with the exception of [12], which provides 97%. Among these
models, only [12] claims F1 reaches about 92% but it requires adding domain
specific knowledge into the model. As a result, deep learning models provide
better overall performance but do not require human intervention. Table 1
shows that the top 4 models achieve significantly high but balanced results.
That means these models provide a low rate of false alarm (high precision) and
high rate of correctly detecting intrusion (high recall).

6 Conclusion

In this paper, we introduce a novel model which integrates advantages of multi-
channel CNN and BiLSTM for detecting intrusion in host-based environments.
With the support of word embeddings and the combination of the two advanced
models, our proposed method can capture both rich local information within
sequences of system calls and long-distance dependency accross sequences in
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the classification process, therefore, achieves the best performance in detecting
intrusion. Our investigation on ADFA-LD dataset confirms the superiority of
deep learning based models over the classical classification methods in detecting
abnormal execution traces.

In the future, we will attempt to apply some enhanced techniques in NLP
to improve our model like attention mechanism, some other word embedding
techniques and ensemble methods.
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