
Southeast-Asian J. of Sciences Vol. 3, No. 1 (2014) pp. 93-104

ANALYSIS OF TRANSMISSION MODEL

FOR INFLUENZA A(H1N1) VIRUS

P. Pongsumpun

Department of Mathematics, Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang

Chalongkrung road, Ladkrabang, Bangkok 10520 Thailand
e-mail: kppuntan@kmitl.ac.th

Abstract

An Influenza A (H1N1) causes a respiratory disease to many people.
This disease has been occurred in many countries worldwide. It has been
continuously announced. The infection can transmit between the people
through coughing or sneezing with the virus. In this paper, we formulate
the SEIQRS model to describe the transmission of Influenza A(H1N1)
virus transmission. We assume that after each person is infected, that
person can be infected again. The standard dynamical modeling method
is used in this study. The threshold number is obtained to examine the
stability of our model. The numerical solutions are shown to support
the results. The behaviors of solutions for different threshold numbers
are presented. The results of this study should point the new alternative
way to reduce the transmission of influenza A(H1N1) virus.

1 Introduction

Influenza virus caused human flu has three types, ie. influenza A, influenza
B and influenza C. A respiratory disease caused by influenza virus type A, so
called Swine flu. In 2009, There was the outbreak of Swine flu due to infection
with H1N1 influenza A and was first observed in Mexico. In 1976, there was
an outbreak of swine flu at Fort Dix, New Jersey. This virus is not same as
the 2009 outbreak, but it was similar to influenza virus type A. Swine flu also
is an Emerging Infectious Disease (EID) because the Swine flu virus has not
circulated previously in human; the virus is entirely new [1]. It usually spread
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among pigs and is not same as human flu virus. It does not often infect people,
and the rare human cases that have occurred in the past have mainly affected
people who had direct contact with pigs. But the current Swine flu outbreak
is different. It is caused by a new Swine flu virus. It has changed in way of
the transmission. The new Swine flu virus can spread from person to person,
among people who have not had any contact with pigs. In the beginning of
March 2009, An influenza outbreak of North America was found to be caused
by a new strain of influenza virus, designated Influenza H1N1. On April 9, 2009
it became apparent to public health officials in Mexico City that an outbreak
of influenza was in progress late in the influenza season. On April 17, 2009, two
cases in children were also reported in California near the Mexican border. As
of April 27, 2009, the United States Government had reported 40 laboratory
confirmed human cases of swine flu, with no deaths. Mexico has reported 26
confirmed human cases of infection with the same virus, including seven deaths.
The current outbreak of swine influenza A (H1N1) evolved so rapidly that as
on April 29, 2009, nine countries officially reported with confirmed cases of
swine influenza A/H1N1 infection. Of these, Mexico, United State, Austria,
Canada, Germany, Israel,New Zealand, Spain and the United Kingdom have
reported laboratory confirmed human cases and deaths due to rapidly progres-
sive pneumonia, respiratory failure and acute respiratory distress syndrome
(ARDS) [2].World Health Organization (WHO) declared ever high stages on
its “pandemic ”scale-alert 6, designating the Influenza H1N1 2009 a potential
threat to worldwide health and declared the outbreak as Public Health Emer-
gency of International Concern (PHEIC) [1]. The total report of swine flu cases
worldwide more than 213 countries was 622,482 by November 27, 2009[3]. Up-
dated data on swine flu deaths has reached a total of 16,931 deaths as of March
21, 2010 [4]. Instead of misleading case counts, CDC has estimated the number
of cases, hospitalizations, and deaths between April 2009 and April 10, 2010.
The CDC has estimated that between 43 million and 89 million cases of 2009
H1N1, between 195,000 and 403,000 H1N1 cases related hospitalizations, and
between about 8,870 and 18,300 H1N1 cases related deaths [5]. D. Klinkenberg,
A. Everts-van der Wind, et al. [6] studied the strategy for emergency vaccina-
tion during an epidemic of classical swine fever virus (CSFV) and presented a
mathematical model of CSFV transmission between pig herds which quantify
the effect of control strategies with and without vaccination and estimate the
model parameters from data of the 1997/1998 CSFV epidemic in the Nether-
lands. In this paper, we study the transmission of Influenza A(H1N1) virus
through mathematical modeling. The standard dynamical modeling method
is used for analysis the behavior of solutions. In this paper, the formulation
of model is presented in section 2. The analytical and numerical results are
presented in section 3. Finally, the discussion and conclusion of our model are
presented in section 4.
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2 Mathematical model

We consider the transmission of influenza A (H1N1) virus between the people.
The people are separated into 5 types such that susceptible, exposed, infectious,
quarantine and recovered. We suppose that after each person is infected, that
person can be infected again. The diagram of the transmission is presented in
figure 1

Figure 1: Flow chart of the model.

Let S′(t) be the number of susceptible human at time t,
E′(t) be the number of exposed human at time t,
I′(t) be the number of infectious human at time t,
Q′(t) be the number of quarantine human at time t,
R′(t) be the number of recovered human at time t.
The dynamical equation for each human can be described as follows:

dS′(t)
dt

= λNT − γ
S′(t)(E′(t) + I′(t))

NT
+ cE′(t) + bI′(t) + αR′(t) − μhS′(t)

(1)
dE′(t)

dt
= γ

S′(t)(E′(t) + I′(t))
NT

− (c + ε + μh)E′(t) (2)

dI′(t)
dt

= εE′(t) − (β + b + μh)I′(t) (3)

dQ′(t)
dt

= βI′(t) − (θ + μh)Q′(t) (4)

dR′(t)
dt

= θQ′(t) − (α + μh)R′(t) (5)

with the conditions:
NT = S′(t) + E′(t) + I′(t) + Q′(t) + R′(t)
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where
λ = the birth rate of human population,
NT = the total human population,
γ = the contact rate of H1N1 virus transmission,
c = the rate at which the exposed human become to be susceptible human
again,
μh = the death rate of human population,
ε = 1/IIP where IIP is the intrinsic incubation period of H1N1 virus,
b = the rate at which the infectious human become to be the susceptible human
again,
θ = the rate at which the quarantine human become to be the recovered hu-
man,
α = the rate at which the recovered human become to be the susceptible hu-
man again,
β = the rate at which the infectious human become to be the quarantine hu-
man,

The total size of population is assumed to be constant. Thus, the rate of

change for each human group equals to zero. We set
dNT

dt
= 0, then we obtain

λ = μh. We normalize our equations(1)-(5) by letting

S(t) =
S′(t)
NT

, E(t) =
E′(t)
NT

, I(t) =
I′(t)
NT

, Q(t) =
Q′(t)
NT

, R(t) =
R′(t)
NT

then the reduced equations become

dS(t)
dt

= μh − γS(t)(E(t) + I(t) + cE(t) + bI(t)+

α(1 − S(t) − E(t) − I(t) − Q(t)) − μhS(t) (6)
dE(t)

dt
= γS(t)(E(t) + I(t)) − (c + ε + μh)E(t) (7)

dI(t)
dt

= εE(t) − (β + b + μh)I(t) (8)

dQ(t)
dt

= βI(t) − (θ + μh)Q(t) (9)

with the conditions

1 = S(t) + E(t) + I(t) + Q(t) + R(t) (10)

3 Analysis of the mathematical model

Analytical results
The steady states are obtained by setting the right hand sides of equations (6)
to (9) equals to zero, then the steady states are as follows:
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i) Disease free steady state: E0 = (1, 0, 0, 0).
ii) Disease endemic steady state: E1 = (S∗, E∗, I∗, Q∗).
where

I∗ =
(R0 − 1)

R0

(εL3L4)
[L4(μhL1 + (β + μh)ε + α(L1 + ε)) + βεα]

, (11)

S∗ =
μh + I∗

(
b + c

L1

ε
+

αβθ

L3L4

)

μh + I∗
γ

ε
(L1 + ε)

, (12)

E∗ = I∗
(

L1

ε

)
, (13)

Q∗ = I∗
(

β

L4

)
, (14)

where

R0 =
γ(b + β + ε + μh)

(b + β + μh)(c + ε + μh)
=

γ(L1 + ε)
L1L2

, (15)

L1 = b + β + μh, (16)
L2 = c + ε + μh, (17)
L3 = α + μh and (18)
L4 = θ + μh. (19)

Theorem 1. The disease free steady state E0 of equations (6)-(9) is locally
asymptotically stable in D if R0 < 1, and is unstable if R0 > 1, where

D = {(S, E, I, Q)|S ≥ 0, E ≥ 0, I ≥ 0, Q ≥ 0, S + E + I + Q ≤ 1}.

Proof.To determine the local stable of the disease-free steady state E0, we
evaluate the Jacobian matrix J(E0) as follows:

JE0 =

⎡
⎢⎢⎣
−α − μh −γ + c − α −γ + b − α −α

0 γ − (c + ε + μh) γ 0
0 ε −(β + b + μh) 0
0 0 β −(θ + μh)

⎤
⎥⎥⎦

The eigenvalues of the above Jacobian matrix are

η1 = −L3, η2 = −L4, η3,4 =
1
2
[(γ − L1 − L2) ±

√
Δ]

where Δ = 4εγ + γ2 + 2γL1 + L2
1 − 2γL2 − 2L1L2 + L2

2

If R0 < 1, then we have

γL1 − L1L2 + γε < 0.
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Consider Δ = (L1L2 − γ)2 + 4(γL1 − L1L2 + γε)
< (L1L2 − γ)2.

That is√
Δ < L1 + L2 − γ when L1 + L2 − γ ≥ 0.

λ3 =
1
2
[(γ − L1 − L2) +

√
Δ] <

1
2
[(γ − L1 − L2) + L1 + L2 − γ] = 0,

λ4 =
1
2
[(γ − L1 − L2) +

√
Δ] <

1
2
[(γ − L1 − L2) − (L1 + L2 − γ)] ≤ 0.

Therefore all roots of the characteristic equations have negative real parts
for R0 < 1. Thus, the disease-free steady state E0 is locally asymptotically
stable for R0 < 1 and unstable for R0 > 1.

Theorem 2. The disease-endemic steady state E1 of equations (6)-(9) is lo-
cally asymptotically stable in D for R0 > 1

Proof.The Jacobian matrix at E1 is given by:

JE1 =

⎡
⎢⎢⎣
−γ(E∗ + I∗) − α − μh −γ + S∗ + c − α −γS∗ + b − α −α

γ(E∗ + I∗) γS∗ − (c + ε + μh) γS∗ 0
0 ε −(β + b + μh) 0
0 0 β −(θ + μh)

⎤
⎥⎥⎦

The characteristic equation is

η4 + a3η
3 + a2η

2 + a1η + a0 = 0 (20)

where

a3 = α + b + x4 + γX∗
h + θ (21)

a2 = β(c + ε) + βE∗
hγ + εE∗

hγ + βγI∗h + εγI∗h + 3βμh + 3cμh + 3εμh + 3E∗
hγμh

+ 3γI∗hμh + 6μ2
h + βγS∗

h + εγS∗
h + 3γμhS∗

h + x3θ + γX∗
hθ + b(c + ε + 3μh

+ γX∗
h + θ) + α(b + x3 + γX∗

h + θ) (22)
a1 = μh(μh(3(c + ε) + 4μh) + γ(2ε + 3μh)X∗

h + b(2(c + ε + γX∗
h) + 3μh

+ 2γX∗
h)) + (bm2 + μh(2(c + ε) + 3μh) + γ(ε + 2μ)X∗

h)θ + α((b + β)m2

+ μh(2(c + ε) + 3μh) + γ(ε + 2μh)X∗
h + (b + β + m2)θ) + β(μh(2c + 3μh

+ 2γX∗
h + (c + 2μh + γX∗

h)θ + ε(γ(E∗
h + I∗h) + 2μh + θ)) (23)

a0 = (β(cμh + m4(γ(E∗
h + I∗h) + μh) + γμhS∗

h) + μh(b(ε + m3) + (c + m4)μh

+ γm4X
∗
h))(μh + θ) + α((b(ε + m3) + (c + m4)μh + γm4X

∗
h)(μh + θ)

+ β(m3(μh + θ) + ε(γ(E∗
h + I∗h) + μh + θ))) (24)

where
X∗

h = S∗
h + E∗

h + I∗h , x3 = β + c + ε + 3μh, x4 = β + c + ε + 4μh, m2 =
c + ε + 2μh + γX∗

h ,
m3 = c + μh + γX∗

h , m4 = ε + μh
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From the Routh-hurwitz criteria, the Disease-endemic steady state is local
stability when it satisfied the following conditions:

i)a3 > 0
ii)a1 > 0 (25)

iii)a0 > 0

iv)a1a2a3 − a2
1 − a2

3a0 > 0

By using MATHEMATICA, the above conditions are satisfied when R0 > 1.
Thus, the endemic disease steady state is locally asymptotically stable for
R0 > 1.

Numerical results
In this section, we analyze the model given by equations (6)-(9). The pa-

rameters are define by c =
1
30

per day satisfies to the 30 days of the exposed

human become to be the susceptible human again, μh =
1

365× 65
per day cor-

responds to the average life time of 65 years for human population, ε =
1
10

per

day means the duration of intrinsic incubation of H1N1 is 10 days, b =
1
40

per
day satisfies to the 40 days at which infectious human become to be susceptible

human again, θ =
1
6

per day corresponds to the 6 days at which quarantine

human become to be recovered human, α =
1
30

per day corresponds to the 30

days at which recovered human become to be susceptible human again, β =
1
8

per day corresponds to the 8 days at which infectious human become to be
quarantine human, the contact rate of H1N1 virus transmission (γ) is arbitrar-
ily chosen.The trajectories of solutions when the parameter values will lead to
a disease free steady state and when they will lead to an endemic steady state
are shown in the following figures.
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Figure 2: Behaviors of our model for R0 < 1. The values of parameters are

c =
1
30

per day, μh =
1

365× 65
per day, ε =

1
10

per day, b =
1
40

per day, θ =
1
6

per day, α =
1
30

per day, β =
1
8

per day, γ = 0.05 and R0 = 0.625. 2a)
Time series solutions of susceptible, exposed, infectious and quarantine human
proportions, respectively. 2b) The trajectories of solutions projected onto the
(S,E), (S,I), (S,Q), (E,I), (E,Q) and (I,Q) planes. The fractions of populations
(S∗, E∗, I∗, Q∗) approach to the disease free steady state (1,0,0,0).
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Figure 3: Behaviors of our model for R0 > 1. The values of parameters

are c =
1
30

per day, μh =
1

365× 65
per day, ε =

1
10

per day, b =
1
40

per

day, θ =
1
6

per day, α =
1
30

per day, β =
1
8

per day, γ = 0.8 and R0 = 10.

3a) Time series solutions of susceptible, exposed, infectious and quarantine
human proportions, respectively. 3b) The trajectories of solutions projected
onto the (S,E), (S,I), (S,Q), (E,I), (E,Q) and (I,Q) planes. The fractions
of populations (S∗, E∗, I∗, Q∗) approach to the endemic disease steady state
(0.100043,0.193052,0.128665,0.0964747).
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4 Discussion and conclusion

In this study, the mathematical model of H1N1 transmission is analyzed, the
threshold number is defined by

R0 =
γ(b + β + ε + μh)

(b + β + μh)(c + ε + μh)

If the threshold number (R0) is less than one, then the disease free state is local
stability. The endemic disease state is local stability for R0 is greater than one.
The bifurcation diagrams are shown in figure 4.

Figure 4: Bifurcation diagram of equations (6)-(9) demonstrate the steady
state solutions of susceptible, exposed, infectious, quarantine and recovered

human proportions with c =
1
30

per day, μh =
1

365 × 65
per day, ε =

1
10

per

day, b =
1
40

per day, θ =
1
6

per day, α =
1
30

per day, β =
1
8

per day. —–
represents the stable solutions and - - - - represents the unstable solutions.
For R0 < 1, E0 will be stable. For R0 > 1, E1 will be stable.
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The basic reproductive number is defined by R =
√

R0 [7]-[8]. It represents
the average number of secondary patients that one patient can produce if intro-
duced into a susceptible population. From the bifurcation diagram, if the basic
reproductive number is less than or equal to one, then an infective replace itself
with less than one new infective, the disease die out. If the basic reproductive
number is more than one, then the proportion of susceptible classes decrease
and the proportion of infectious classes increase. These behaviors occur be-
cause there are enough susceptible human to be infected from H1N1 infectious
human.Furthermore, we simulate the behaviors of our solutions for the different
threshold numbers as shown in figure 5.

Figure 5: Time series solutions of susceptible, exposed, infectious and quaran-
tine human proportions, respectively, for the different of R0. The parameters
are same as in figure 4.
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From figure 5, we can see that if the basic reproductive number is higher,
this means that one case can produce the greater number of secondary cases,
and then the period of oscillation is shorter. Seasonal influenza occurs every
year and the viruses change in each year, but many people have some immunity
to the circulating virus that helps limit infections. By contrast, the pandemic
swine flu virus was a new virus when it emerged and most people had no or
little immunity to it [9]. The basic reproductive numbers are used for reducing
the outbreak of many diseases [10-12]. The results of this study should point
the way for decreasing the outbreak of this disease.
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