ON THE EXPONENTIAL DIOPHANTINE EQUATION $2^{x}-3^{y}=z^{2}$

Sutthiwat Thongnak, Wariam Chuayjan
and
Theeradach Kaewong
Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung, 93210, Thailand
email: t.sutthiwat@gmail.com

Abstract

In this paper, we prove the solutions of the exponential Diophantine equation $2^{x}-3^{y}=z^{2}$ where x, y and z are non-negative integers. To find the solution, Catalan 's conjecture and division algorithm congruence were applied. The result indicates that the equation has three solutions (x, y, z) including $(0,0,0),(1,0,1)$ and $(2,1,1)$.

1 Introduction

Over a decade, several mathematical researches have investigated the solution of the exponential Diophantine equation of the form $a^{x}+b^{y}=z^{2}$ with given constant a and b where x, y and z are non-negative integers. Because there was no general theory of the exponential Diophantine equation, a number of the equations were solved via a variety of methods. In 2007, Acu [1] solved the equation for $a=2$ and $b=5$. The non-negative integer solutions to the equation are $(x, y, z) \in\{(3,0,3),(2,1,3)\}$. During 2008-2016, the researches related exponential diophantion appears in [5], [9]-[10], [11]-[22]. Recently, Jayakumar and Shankaralidoss [6] study solution of the Diophantine equation $47^{x}+2^{y}=z^{2}$. They proved that there is a unique non-negative solution $(x, y, z) \in\{(0,3,3)\}$ to the equation. More researches on the Diophentine equation released in 2017 appeared in [2]-[4], [7]. However, there are still more exponential Diophantine equations that we need to prove their solutions.

Key words: exponential Diophantine equation, integer solution, congruence 2010 AMS Mathematics Subject Classification: 11D61.

In this paper, we solve a new exponential Diophentine equation of the form $a^{x}-b^{y}=z^{2}$ with $a=2$ and $b=3$ where x, y and z are non-negative integers.

2 Preliminaries

Proposition 2.1. [8] (Catalan 's conjecture) $(3,2,2,3)$ is a unique solution (a, b, x, y) for the Diophantine equation $a^{x}-b^{y}=1$ where a, b, x and y are integers such that $\min \{a, b, x, y\}>1$.

3 Main Result

Theorem 3.1. The Diophantine equation $2^{x}-3^{y}=z^{2}$ has three non-negative integer solutions (x, y, z) including $(0,0,0),(1,0,1)$ and $(2,1,1)$.

Proof. We suppose x, y and z to be non-negative integers such that $2^{x}-3^{y}=$ z^{2}. To find the solutions, we consider the variable x into two cases.

Case $x=0$. We have $1-3^{y}=z^{2}$. If $y=0$, then we have $z^{2}=0$. Hence, a solution (x, y, z) is $(0,0,0)$. If $y \geq 1$, then we have $z^{2} \leq-2$ which is impossible.

Case $x \geq 1$. In this case, we divide number y into two subcases.
Subcase $y=0$. We have $2^{x}-z^{2}=1$. From Catalan 's Conjecture, the equation has no solutions when x and $z>1$. It is sufficient to consider in the cases $x=1$ or $z \leq 1$. For $x=1$, we have $2-z^{2}=1$. It is simple to obtain $z=1$. It follows that $(x, y, z)=(1,0,1)$. For $z \leq 1$, it is obvious to consider $z=0$ and $z=1$. If $z=0$, we obtain $2^{x}=1$. Then $x=0$. If $z=1$, it is easy to obtain that $x=1$. A solution (x, y, z) is $(1,0,1)$.

Subcase $y \geq 1$. In this subcase, we consider for $x=1$ or $x \geq 2$.
If $x=1$, then it follows that $z^{2} \leq-1$. This is impossible.
If $x \geq 2$, we divide number x into even and odd.
For x is even, there is a positive integer k such that $x=2 k, \exists k \geq 1$. From $2^{x}-3^{y}=z^{2}$, we have

$$
\begin{equation*}
2^{2 k}-z^{2}=3^{y} \tag{3.1}
\end{equation*}
$$

It follows that $3^{y}=2^{2 k}-z^{2}=\left(2^{k}-z\right)\left(2^{k}+z\right)$. Let $p+q=y$ where p and q are non-negative integers and $0 \leq p<q$. Thus, we have

$$
\begin{align*}
& 2^{k}-z=3^{p} \tag{3.2}\\
& 2^{k}+z=3^{q} \tag{3.3}
\end{align*}
$$

From (3.2) and (3.3), we obtain

$$
\begin{equation*}
2^{k+1}=3^{p}\left(1+3^{q-p}\right) \tag{3.4}
\end{equation*}
$$

This implies that $3^{p} \mid 2^{k+1}$. Thus $p=0$. From (3.4), we get

$$
\begin{equation*}
2^{k+1}-3^{q}=1 \tag{3.5}
\end{equation*}
$$

By proposition 2.1, it is sufficient to consider $k+1 \leq 1$ or $q \leq 1$. For $k+1 \leq 1$, we obtain that $k \leq 0$ which is contradiction because $k \geq 1$. For $q \leq 1$, this impiles that $q=1$. From (3.5), then $2^{k+1}=4$. We obtain $k=1$ so $x=2$. From (3.3), we have $z=1$. Since $0 \leq p<q=1$. This impiles that $p=0$. We get $y=p+q=0+1=1$. Thus, another solution is $(x, y, z)=(2,1,1)$. For x is odd, we have $2^{2 k+1}-z^{2}=3^{y}$ where k is a positive integer. Then we have $2^{2 k+1}-3^{y}=z^{2}$. Since $2^{2 k+1} \equiv-1(\bmod 3)$ and $3^{y} \equiv 0(\bmod 3)$, it follows that $z^{2} \equiv-1(\bmod 3)$. This is a contradiction because z is integer.

References

[1] D. Acu, On a diophantine equation, General Mathematics, 15 (2007), 145-148.
[2] S. Asthana and M. M. Singh, On the diophantine equation $3^{x}+13^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 114 (2017), 301-304.
[3] S. Asthana, On the Diophantine Equation $8^{x}+113^{y}=z^{2}$, International Journal of Algebra, 11 (2017), 225-230.
[4] N. Burshtein, On the Diophantine Equation $p^{x}+q^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 13 (2017), 229-233.
[5] S. Chotchaisthit, On the Diophantine Equation $2^{x}+11^{y}=z^{2}$, Maejo Int. J. Sci. Technol., 7 (2013), 291-293.
[6] P. Jayakumar and G. Shankaralidoss, More on the Diophantine Equation $47^{x}+2^{y}=z^{2}$, International Journal for Innovative Research in Science \& Technology, 3 (2017), 82-83.
[7] G. Jeyakrishnan and G. Komahan, More on the Diophantine Equation $27^{x}+2^{y}=z^{2}$, International Journal for Scientific Research \& Development, 4 (2017), 166-167.
[8] P. Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, Journal für die reine and angewandte Mathematik, 27 (2004) 167-195.
[9] L. Qi and X. Li, The Diophantine Equation $8^{x}+p^{y}=z^{2}$, Scientific World Journal, (2015) 1-3.
[10] J. F. T. Rabago, On the Diophantine Equation $2^{x}+17^{y}=z^{2}$, J. Indones. Math. Soc., 22 (2016), 85-88.
[11] B. Sroysang, More on the Diophantine Equation $8^{x}+19^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 81 (2012), 601-604.
[12] B. Sroysang, On the Diophantine Equation $3^{x}+5^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 81 (2012), 605-608.
[13] B. Sroysang, On the Diophantine Equation $31^{x}+32^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 81 (2012), 609-612.
[14] B. Sroysang, More on the Diophantine Equation $2^{x}+3^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 84 (2013), 133-137.
[15] B. Sroysang, On the Diophantine Equation $23^{x}+32^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 84 (2013), 231-234.
[16] B. Sroysang, More on the Diophantine Equation $2^{x}+19^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 88 (2013), 157-160.
[17] B. Sroysang, On the Diophantine Equation $3^{x}+17^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 89 (2013), 111-114.
[18] B. Sroysang, On the Diophantine Equation $47^{x}+49^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 89 (2013), 279-282.
[19] B. Sroysang, On the Diophantine Equation $143^{x}+145^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 91 (2014), 265-268.
[20] B. Sroysang, On the Diophantine Equation $46^{x}+64^{y}=z^{2}$, International Journal of Pure and Applied Mathematics, 91 (2014), 399-402.
[21] A. Suvarnamani, Solution of the Diophantine Equation $2^{x}+p^{y}=z^{2}$, Int. J. of Mathematical Sciences and Applications, 1 (2011), 1415-1419.
[22] A. Suvarnamani, On two Diophantine Equations $4^{x}+7^{y}=z^{2}$ and $4^{x}+11^{y}=z^{2}$, Science and Technology RMUTT Journal, 1 (2011), 25-28.

