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Abstract

The objectives of this study were to propose mathematical model of
Nipah Virus Disease with effect of control measures on the transmission
model Nipah Virus Disease, and to investigate the transmission model of
Nipah Virus Disease. The standard modeling method is applied for model
analysis. In this study, there were two control measures, the awareness
rate to protect disease (u1) and the recovery rate of humans by treatment
(u2).

In the proposed model, the human population was divided into three
compartments, susceptible human (S), infectious human (I), and recov-
ered human (R). The results showed that there were two equilibrium
points; disease free equilibrium and endemic equilibrium point. The qual-
itative results depended on the basic reproductive number R0.

We obtained the basic reproductive number by using the next genera-
tion method. Stabilities of the model are determined by Routh-Hurwitz
criteria. If R0 < 1, with u1 = 0.96 and u2 = 0.74, then the disease
free equilibrium point is local asymptotically stable, but if R0 > 1 with
u1 = 0.50 and u2 = 0.35, then the endemic equilibrium point is lo-
cal asymptotically stable. The graphical representations are provided to
qualitatively support the analytical results. It concluded that if the ef-
fective of awareness rate to protect disease (u1) and the recovery rate of
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humans by treatment (u2) increases, then the spread of this disease is
reduced.

1. Introduction

Nipah is a zoonotic virus that can spread from animals to humans through
the contact of saliva or contaminated tissues. This virus has a natural host in
fruit bats and can be transmitted to other domesticated animals such as pigs
and then to humans.

Those infected with the Nipah virus will suffer acute brain inflammation,
and even if the patients survive, the encephalitis from the virus can resume
within two years, while patients who have pneumonia can also spread the virus
through droplets from sneezing, allowing human-to-human transmission. One
infected patient can spread the disease quickly to more than 30 people [1].

Nipah virus is an emerging pathogen first identified in 1999 in Malaysia,
with cases also seen in Singapore, in an outbreak of acute encephalitis in pigs
and humans. Since then, human Nipah virus outbreaks have been reported in
India and Bangladesh. While no new outbreaks have been reported in Malaysia
and Singapore, repeated outbreaks have been noted in Bangladesh almost every
year since 2001 in select districts with occasional outbreaks in neighboring India
[2].

From 1998 to 2015, there have been at least 600 cases of Nipah virus hu-
man infections, with case fatalities in later outbreaks in India and Bangladesh
ranging between 43 and 100%. Human to human transmission is particularly
notable in the outbreaks in India and Bangladesh, accounting for 75% and
51% of cases, respectively. Nipah virus infection has both a neurological and
respiratory disease presentation. Respiratory involvement differs in prevalence
between the outbreak in Malaysia (29%) and Bangladesh (75%). Relapsing
Nipah virus encephalitis distinct from acute Nipah virus encephalitis has been
described and is estimated to occur in < 10 of survivors. Around 7 to 9 per-
cent of the fruit bat population in Thailand was found to host the Nipah virus,
though they only spread the virus during a specific time of the year from
April to June. The virus in Thai bats has 99 per cent genetic resemblance to
the strain causing the current outbreak in India. Although Nipah virus has
caused only a few outbreaks, it infects a wide range of animals and causes
severe disease and death in people, making it a public health concern [3].

Mathematical models have become important tools in analyzing the spread
and control of infectious disease. In 2012, Biswas [4] studied the dynamics of
Nipah virus by formulated and analyzed SIR model. Sultana et al. [5] formu-
lated a dynamic model of Nipah virus infections with variable size population
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and two control strategies where creating awareness and treatment are con-
sidered as controls. From the simulations it was monitored that the optimal
combination of treatment and creating awareness is very prominent for disease
elimination.

In this present study, we have proposed and analyzed epidemic model to
study the effect of two control measures, the awareness rate to protect disease
and the recovery rate of humans by treatment, on the transmission of Nipah
virus. The remainder of the paper is organized as follows. In section 2, we
formulate the propose model. In section 3, we analyze the model by using
the standard method, to determine both disease free and endemic equilibrium
point, derive the basic reproductive number and investigate the stability of
the model. In section 4, we simulate numerical results, which confirm our
theoretical results. Finally, we conclude our study in section 5.

2. Model Formulation

For this study, we formulated (SIR) model (Susceptible-Infected-Recovered)
for the transmission of Nipah Virus Disease. Let S(t), I(t) and R(t) denote the
susceptible, the infected, and the recovered human population, respectively.
The Nipah Virus Disease model is combined the system of human populations.
The diagram of the transmission of the Nipah Virus Disease as shown in Fig.1.

Fig. 1 Diagram of the transmission of the Nipah Virus Disease

We define: S(t) is the number susceptible human population at time t,
I(t) is the number infected human population at time t, R(t) is the number
recovered human population at time t.

The dynamical model can be represented by the following system of differ-
ential equations as follows,

dS

dt
= A − (1 − u1)βSI − μS (1)

dI

dt
= (1 − u1)βSI − (u2 + γ + α + μ)I (2)
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dR

dt
= (u2 + γ)I − μR (3)

with N = S + I + R,
dN

dt
= A − μN − αI (4)

where A is the birth rate of human population, β is the transmission rate of
human-to-human, μ is the natural death rate of human population, α is the
natural death rate of Nipah Virus Disease, γis the recovery rate of human
population, u1 is the awareness rate to protect disease, u2 is the recovery rate
of humans by treatment and N is the total number of human population.

3. Model Analysis

Equilibrium point:
By using the standard method for analyzing our model, this system has

two equilibrium points; disease free equilibrium point and endemic equilibrium
point. We obtained these by setting the right hand side of equations, (1)-(4)
to zero. Doing this, we obtain

1. Disease Free Equilibrium (DFE) denoted by E0(S, I, R, N). In the case
of the absence of the disease, that is I = 0, we obtained S = A

μ , R = 0, N = A
μ .

Thus, E0(S, I, R, N) =
(

A
μ , 0, 0, A

μ

)
2. Endemic Equilibrium (EE) denoted by E1(S∗ , I∗, R∗, N∗). In the case

where the disease is present, that is I∗ > 0, we obtained

I∗ =
(1 − u1)βA − μ(u2 + γ + α + μ)

(1 − u1)(u2 + γ + α + μ)β
, S∗ =

A

(1 − u1)βI∗ + μ
,

R∗ =
(u2 + γ)I∗

μ
, N∗ =

A − αI∗

μ

Thus, E1(S∗, I∗, R∗, N∗) =
(

A
(1−u1)βI∗+μ , I∗, (u2+γ)I∗

μ , A−αI∗
μ

)
.

Basic Reproductive Number: The basic reproductive number (R0) (thresh-
old condition in epidemiology) is the number of secondary infections induced
by an infected individual into the total susceptible population [6]. By using the
next generation method and used spectral radius [7]. Doing this, we rewrite
the system in matrix form.

dX

dt
= F (X) − V (X), X = (S, I, R, N)T

and obtain,
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F (X) =

⎡
⎢⎢⎣

0
(1 − u1)βSI

0
0

⎤
⎥⎥⎦ and V (X) =

⎡
⎢⎢⎣
−A + (1 − u1)βSI + μS

(u2 + γ + α + μ)I
−(u2 + γ)I + μR
−A + μN + αI

⎤
⎥⎥⎦

Finding the Jacobian matrix of F (X) and V (X) evaluated at E0(A
μ , 0, 0, A

μ ),
we obtain:

F (E0) =

⎡
⎢⎢⎣

0 0 0 0
0 (1−u1)βA

μ 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ and V (E0) =

⎡
⎢⎢⎣

μ (1−u1)βA
μ

0 0
0 u2 + γ + α + μ 0 0
0 −u2 − γ μ 0
0 α 0 μ

⎤
⎥⎥⎦

Finding FV −1, we get

FV −1 =

⎡
⎢⎢⎣

0 0 0 0
0 (1−u1)βA

μ(u2+γ+α+μ
0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

The spectral radius of FV −1 is denoted by ρ(FV −1), thus,

ρ(FV −1) =
(1 − u1)βA

μ(u2 + γ + α + μ)

We obtained the basic reproductive number as shown,

R0 =
(1 − u1)βA

μ(u2 + γ + α + μ)

Stability Analysis
In this section, we show the stability of the model at both disease free

equilibrium and endemic equilibrium. First, we show that the system (1)-(4) is
local asymtotically stable. The stability of this system as shown in the follow
Theorem.

Theorem 1. The disease free equilibrium of the system (1)-(4) at the equilib-
rium E0, is local asymptotically stable if R0 < 1, and unstable if R0 > 1.

Proof. Since R0 < 1, we have the Jacobian matrix of the system (1)-(4) at
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E0 =
(

A
μ

, 0, 0, A
μ

)
is

J0 =

⎡
⎢⎢⎢⎣
−μ −(1−u1)βA

μ 0 0
0 (1−u1)βA−μ(u2+γ+α+μ)

μ 0 0
0 u2 + γ −μ 0
0 −α 0 −μ

⎤
⎥⎥⎥⎦

The eigenvalues of the Jacobian matrix J0 are obtained by solving det(J0 −
λI) = 0. From this, we obtain the characteristic equation,

(λ + μ)(λ + μ)(λ + μ)
(

λ +
μ(u2 + γ + α + μ) + (1 − u1)βA

μ

)
= 0.

From the characteristic equation, we see that four eigenvalues are λ1 =
−μ < 0, λ2 = −μ < 0, λ3 = −μ < 0, λ4 = −μ(u2+γ+α+μ)+(1−u1)βA

μ
< 0. �

Theorem 2. The endemic equilibrium of the system (1)-(4) at the equilibrium
E1, is local asymptotically stable if R0 > 1, and unstable if R0 < 1.

Proof. Since R0 > 1, we have the Jacobian matrix of the system (1)-(4) at
E1(S∗, I∗, R∗, N∗) is

J1 =

⎡
⎢⎢⎣
−(1 − u1)βI∗ − μ −(1 − u1)βS∗ 0 0

(1 − u1)βI∗ (1 − u1)βS∗ − (u2 + γ + α + μ) 0 0
0 u2 + γ −μ 0
0 −α 0 −μ

⎤
⎥⎥⎦

where S∗, I∗, R∗, N∗ are given by equation (4). The characteristic equation of
Jacobian matrix at E1, given by equations (1)-(4), becomes

(λ + μ)(λ + μ)(λ2 + B1λ + B2) = 0

where a1 = (1 − u1)βI∗ − μ, a2 = (1 − u1)βS∗ , a3 = (1 − u1)βI∗, a4 =
u2 + γ + α + μ, a5 = u2 + γ, B1 = a1 − a2 + a4, B2 = a2a3 − a1(a2 − a4).

From the characteristic equation, we see that two eigenvalues are λ1 =
−μ < 0, λ2 = −μ < 0 The other two are the solution of quadratic equation
λ2 +B1λ+B2 = 0. The roots of this equation will be negative if two conditions
satisfied with the Routh-Hurwitz criteria [8], B1 > 0 and B2 > 0. �

Numerical Results

The parameters used in the numerical simulation results are given in Table 1.
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Table.1 parameter values in numerical simulations at disease free state.

Stability of disease free state: Using the values of parameters as shown in
Table.1. We obtained the eigenvalues and the basic reproductive number as
follows,

λ1 = −0.002, λ2 = −0.002, λ3 = −0.002, λ4 = −0.457, R0 = 0.3963011890 < 1.

Since all eigenvalues are to be negative and the basic reproductive number is
less than one, the disease free equilibrium state, E0, will be local asymptotically
stable, as shown in Fig 2.

Fig 2. Time series of (a) Susceptible population (S), (b) Infected population
(I), (c) Recovered population (R) and (d) Total population (N) with the

values of parameters
A = 0.03, β = 0.5, μ = 0.002, α = 0.01, γ = 0.005, u1 = 0.96, u2 = 0.74, R0 =

0.3963011890 < 1.
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We see that the solutions approach to the disease free equilibrium E0 =
(15, 0, 0, 15).

Stability of endemic state: we change the value of the awareness rate to
protect disease to u1 = 0.50, the recovery rate of humans by treatment u2 =
0.35 and keep the other values of parameters to be those given in Table 1.
We obtain the eigenvalues and the basic reproductive number as follows, λ1 =
λ2 = −0.002, λ3 = −0.01011798365+0.08161858127i, λ4 = −0.01021798365−
0.08161858127i, R0 = 10.21798365 > 1.

Since the real part of all eigenvalues are to be negative and the basic reproduc-
tive number is greater than one, the endemic equilibrium state, 1 E , will be
local asymptotically stable as shown in Fig. 3.

Fig.3. Time series of (a) Susceptible population (S), (b) Infected population
(I), (c) Recovered population (R) and (d) Total population (N) with the values
of parameters:
A = 0.03, β = 0.5, μ = 0.002, α = 0.01, γ = 0.005, u1 = 0.50, u2 = 0.35, R0 =
10.21798365 > 1.

The state variables approach to endemic equilibrium
E1 = (1.468, 0.07374386921, 13.08953678, 14.63128065.)
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Conclusion

In this study, we proposed mathematical model of Nipah Virus Disease with
the effect of control measures on the transmission model Nipah Virus Disease
and analyzed the analytical results by using standard modeling method. The
basic reproductive number is obtained through the use of spectral radius of the
next generation matrix. The basic reproductive number is R0 = (1−u1)βA

μ(u2+γ+α+μ) .

The basic reproductive number is the threshold condition for determining the
stability of the equilibrium point of the model which are shown in Fig. 2 and 3.
Our simulation result shown that R0 were 0.3963011890 and 10.21798365 when
u1 = 0.96, u2 = 0.74 and u1 = 0.50, u2 = 0.35, respectively. It is seen that the
infected human will decrease when the effective of awareness rate to protect
disease (u1) and the recovery rate of humans by treatment (u2) is increased.
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