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Abstract

This paper describes computational errors found in Finite-Difference
Time-Domain analyses of photonic crystal fibers, and proposes several
techniques for the accuracy improvement. We first briefly introduce the
FDTD computation scheme, and discuss about the optimization of vari-
ous simulation parameters to obtain high accuracy with reasonable com-
putation loads. The calculation of bending loss with good agreement
with experimental data is demonstrated by proper selection of the com-
putation domain. Finally, we propose the simulation based on a real fiber
image to reflect irregularities and fabrication errors of fiber structures.

1. Introduction

First proposed in 1995 [1], photonic crystal fibers (PCFs) with silicaair mi-
crostructures attracted many researchers as these fibers have unique applica-
tions in ultrawide-band transmission, super continuum generation, high power
delivery, novel optical amplifiers, and other functional devices. The typical
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PCF is made from a single material of undoped fused silica. Its cladding con-
sists of a two dimensional photonic crystal with an air hole running along the
length of the fiber [2]. One or more missing air holes at the center form the
core of the PCF. Light waves can be guided in such a structure because the
average index of the surrounding holey area is lower than the refraction in-
dex of the solid silica. The wide controllability of multiple parameters in the
cladding structures lead to the emergence of various useful properties including
endless single mode, flattened dispersion, and low bending losses. Theoretical
studies of guided modes in PCFs have been performed based on a wide variety
of techniques including the full vectorial effective index method [3], the plane
wave expansion method [4], the finite element method [5], [6], the localized ba-
sis function method [7], and the finite-difference time domain (FDTD) method
[8]. In this work, the FDTD technique [9] is considered for full analyses of
microstructured or photonic crystal fibers.

Compared to other techniques, the FDTD method has the most simple and
straightforward algorithm for solving time-dependent electromagnetic prob-
lems. The algorithm requires minimal assumptions and approximations, and
thus provides fairly reliable results assuming that the spatial and temporal reso-
lutions are sufficiently high. Currently, the FDTD technique is one of the most
popular techniques for the study of 3-D photonic crystal structures such as
nano-cavities and waveguides. Use of the FDTD method for analyses of PCFs
has been proposed by M. Qiu [8], and calculation of elementary properties of
PCFs was demonstrated [8]-[10].

Here we present the full aspects in computational errors of FDTD technique
for analyses of PCFs. The paper is organized as follows. In Section 2, basic
algorithm of the modified FDTD method used in this study is summarized.
The simulation procedures and the interpretation of the results are described
in detail. Section 3 explains the origin of errors in the FDTD method in connec-
tion with the computation loads, and discusses the optimization of simulation
parameters for high accuracy with reasonable computation time. In Section
4, bending loss of a PCF is calculated using FDTD, and the discrepancy be-
tween the simulation and experimental results is highlighted. We identify the
origin of the computation errors, and demonstrate that the errors are removed
in the simulation with full cladding structures. In Section 5, we introduce a
new function into the FDTD program which acquires an image file of a real
fiber to reflect the irregularities of the fiber structure in the computation. It
enables the investigation of the exact optical properties of a non-ideal fiber.
Our conclusions are given in Section 7.
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2. The periodic 3D-FDTD algorithm

The FDTD method is based on an algorithm that calculates the temporal evo-
lution of the electromagnetic fields. Maxwells equations are solved at each
discrete time by a so-called Yee-cell technique on a discrete three-dimensional
mesh [8]. In Yees technique, the grids for the E and H fields are interleaved in
the space as shown in Fig. 1. In a 3-D case, each E component is surrounded
by four H components, and each H component is surrounded by four E compo-
nents in computation. All the E components in the 3-D spaces are calculated
first, and stored in memory for a particular time step using the H components
previously stored in memory. Then, all the H components are updated and
stored in memory using the E data just computed.

Therefore, the electric and magnetic field components are evaluated at dif-
ferent time steps and at different grid points, shifted by a half-period in both
space and time. This process is repeated over multiple iterations.

The optical pulse propagation along a fiber can be directly simulated if
a computation structure includes a 3-D piece of fiber whose length is much
longer than the pulse width. Such a simulation requires enormous memory
and computation time, making the FDTD method impractical in such cases.
However, when considering continuous wave propagation along the fiber, both
the electromagnetic wave and dielectric structure remain constant along the
fiber length, with the exception of a continuous increment of the optical phase.
Therefore, the 3-D fiber structure can be reduced to an arbitrarily short length
if a proper boundary condition is applied to account for the optical phase
difference along the length, as shown in Fig. 2. Now the electromagnetic fields
at the boundary layers can be updated using the fields at the opposite boundary
layer after applying this phase difference.
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For minimum calculation time and memory requirements, the computa-
tional domain may include just one computation grid along the z-axis with a
size of Δz, which makes it a (effectively) 2-D structure. The propagation con-
stant β along the z direction is specified by the user, and the phase difference
between the upper and lower boundaries of a unit grid is Δϕ = βΔz. Here we
used both real and imaginary parts for E and H fields to define the optical
phase. The absorptive layers are employed at the boundaries in the x−y plane.

The optical variation (in phase or amplitude) along the z axis is usually
much faster than those along the x and y axes, and thus a high grid resolu-
tion along the z axis is essential for accurate simulation. Here we adopted
anisotropic resolution along each axis to increase the resolution for the z-axis,
while keeping the resolution along the x- and y- axes low to reduce memory
requirements and computation time.

This approach is very similar to the 2-D FDTD method reported previously
[8]. The 2-D FDTD algorithm is definitely more compact than our 3-D case.
However, it should be noted that our method retains the original 3-D FDTD
algorithm, and thus it can handle both 3-D and 2-D structures without need of
modification of the codes. (The boundary condition does nothing in the case of
3-D simulation since the absorptive layers are also imposed at the z-boundaries
and the field intensities become zero.) Thus, it gives us greater flexibility
compared to the 2-D FDTD method developed solely for 2-D waveguides or
fibers [10].

Figure 2: The cross section in xy plane and xz plane of the computational domain. Black

represents silica regions and white represents vacuum. The gray region on the edges

denotes the phase match layer (PML) [11].

The simulation results we obtain from the FDTD computation are only
electromagnetic field distributions. To extract certain information from the
raw data, an interpretation step is required. Usually more than one simulation
run is required to obtain desired information. In this section, we describe our
simulation procedure and discuss how we interpreted the simulation results.
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The complete simulation procedure is as follows:

1. Setup: the computation structure (geometry and grid sizes Δx, Δy, Δz);
field excitation (location, center frequency, frequency bandwidth, and field po-
larization); propagation constant (β); and field-observation points are described
in the setup file.

2. Simulation: the E and H fields are computed and updated at each time
step (T). Some of the field components are saved in storage for post-processing,
as specified in the setup file.

3. Post-processing: The stored field data are analyzed in the time, fre-
quency, and spatial domains.

To be able to observe the field profile of the fundamental mode, the optical
source should selectively excite only the fundamental mode. It could be done
in the second simulation by modifying the optical source so that it has the
center frequency of ωc = 3.601 and very narrow bandwidth of Δω = 0.051,
which corresponds to the pulse width of T = 5000. The propagation constant
was kept the same as β0. The frequency of ω = 3.601 corresponds to the
optical wavelength of λ = 1550 nm for the lattice constant of Λ = 5.6μm. The
effective index of the mode was calculated to be neff = β/ω = 1.445. This
result provides a single data point in the dispersion curve, as shown in Fig. 3.
The other data points were obtained by repeating the simulation with different
values of β.
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3. Error analysis and optimization of FDTD pa-

rameters

A. FDTD parameters

The approximation used in the FDTD algorithm occurs when the time and
spatial derivatives in Maxwells equations are replaced by the slopes between
the neighboring data points with finite temporal or spatial differences. These
finite sizes of time step and grid size result in the numerical errors in FDTD
calculations. The finite length of the total computation time also affects the
accuracy of the output in the frequency domain.

In this section, we investigate the influence of grid size (resolution), S-
factor, and total computation time step (Tmax) on accuracy and computation
load, and suggest the optimal conditions under which reliable simulation can
be performed with reasonable computing power.

The memory required for the storage of the E and H fields, and the total
computation time, is determined by various parameters as shown in Table 1.
Here, Lx and Ly are the structure sizes; Δx, Δy and Δz are the grid sizes
along the x, y and z directions; and tmax(= TmaxΔt) and Δt are the real time
span and time step, respectively. S (S-factor) was introduced to determine the
time step Δt. The size of the computational domain, Lx and Ly, should be big
enough so that the mode intensity is nearly zero at the boundaries. Although
typically 3 ∼ 5 layers of air holes are enough to obtain zero intensity at the
boundaries, it should be reconsidered carefully in some cases as in section 4.

In the case of 2-D FDTD simulation for a PCF, the required memory size
is usually well below 1 GB, and can be handled using a personal computer.
However, the computation time ranges from minutes to days depending on the
simulation conditions.
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B. Effects of grid sizes

The grid size should be small enough to describe the continuous variation of the
E and H field distributions. In optical waveguides such as PCFs, the optical
phase or amplitude changes much faster along the propagating direction (z-
axis) compared to the transverse directions (x- and y-axes). Δz < λ/20 should
be satisfied to describe the rapidly changing phase variation, while Δx, Δy <
Λ/10 is adequate to describe the optical amplitude variation on the transverse
plane.

To investigate this resolution-dependent accuracy of the FDTD simula-
tion, we repeated the same simulation with different sets of resolutions. The
FDTD results were compared with those from the planewave expansion method
(PWE), which was performed with an exceptionally large number of planewaves
to guarantee high accuracy. As shown in Fig. 4, the higher resolution of
Δx = Δy = Δz = Λ/100 produced results closer to the PWE results. How-
ever, this simulation took computation time of 5x5x5 times longer than that of
Δx = Δy = Δz = Λ/20.

On the other hand, when an anisotropic resolution of Δx = Δy = Λ/20 and
Δz = Λ/100 was used, we achieved the same high accuracy with computation
time increased by only 5 ∼ 20 times. This result demonstrates the usefulness
of this approach. In the rest of the paper, the anisotropic resolution of Δx =
Δy = Λ/20 and Δz = Λ/100 is used.

C. Two origins of error

The length of real time span tmax should be considered when calculating the
optical frequencies of the modes excited with a given β. The mode frequencies
are obtained by locating peaks of Ex(t) in the FFT data as explained in Section
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2, and the accuracy of the peak location is related to the density of the FFT
data, which is determined by the time span of the row data E(t).

Therefore, the total error in the mode frequency obtained by FDTD sim-
ulation came from two different origins as shown in Fig. 5. The first error,
named computation error Δωc is due to the finite sizes of the grid and the time
step. The second error is due to the finite length of the time span and is called
decision error Δωd. The total error can be written as

Δω =
√

Δω2
c + Δω2

d (1)

where Δωd = Λ
Δz

S
2tmax

and Δωc = f(Δx, Δy, Δz, S).
The decision error will be further reduced by using a curve fitting technique

to find the peak position. The function for computation error Δωc is not found
in an analytical form, and it can be determined only by numerical analysis.
Attempts to reduce ωc or ωd are always accompanied by an increase in compu-
tation time as shown in Table 1. Therefore, it is important to create a balance
between the two types of error to minimize the total error for a given compu-
tation time. For example, in Fig. 5, the computation error is much larger than
the decision error. In this case, increasing spatial or time resolution should be
more effective than taking a longer time span.

D. Effects of the S-factor

The time step Δt is defined by the parameter S as shown in Table 1. The
condition for the S-factor is known as the Courant stability condition, which
forces the propagation length of light taken during Δt to be shorter than one
grid. When this condition is not satisfied, the amplitude of the EM field di-
verges as time goes on. Figure 6(a) shows an example in which the amplitude
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of an electric field diverged after T = 4000 because the stability condition was
not satisfied with S = 0.7. In this case, only the data for T < 4000 can be
accepted for data analysis.

The S-factor affects the decision error Δωd in Eq. (1) as well as the stability
of the FDTD calculation. To investigate S-factor dependence, we ran the same
simulation with various values of S. Here, the computation time (or Tmax)
consumed for each simulation was kept equal. The results are shown in Fig.
6(b), with error bars indicating the magnitudes of the decision errors Δωd.

Fig. 6. (a). The divergence of electric field starting at T 40000 when S,=,0.7.

(b) The effective index of fundamental mode with decision errors depending on S-factor.

The error increases for small S-values since the field divergence occurred
very early, and only a small portion of the data was available for the FFT. A
large value of S also increased the error, as previously discussed. For S > 1.2,
no divergence of the electric field was observed. Based on this study, the
optimal value for the S-factor may be found in the range of 1.0 ∼ 1.5 for our
applications.

4. Size effect of computational domain in bend-

ing loss calculation

A. Principle of bending loss calculation

The analysis of optical properties of bent fibers, including bending loss, are
fundamental issues when considering reliable signal transmission [12]-[14] or
optical sensing [15]. Recently, we reported the simulation of light propagation
in bent fibers using 2-D FDTD [16]. To convert the 3-D structure of a bent fiber
into a 2-D structure, the conformal transformation of the index distribution was
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used as:

n2
eq(x, y) = n2(x, y)(1 +

2x

Rb
) (Eq.2)

where Rb is the radius of the bend and n(x, y) is the refractive index profile
of the straight fiber [17]. The bottom part of Fig. 7(a) shows the transformed
refractive index profile of a PCF with a bend radius of 5.5 mm.

Fig. 7(b) shows the recorded optical intensity E2 at the center of the fiber
as a function of time. The optical intensity corresponds to I(t) =< E2(t) > .
Here, we obtained the loss factor per unit time α′ from curve fitting with the
function I(t) = I0exp(−α′t). The loss factor per unit length is calculated from
α = α′/v, where v is velocity of light in the fiber.

B. Cladding boundary effect in bending loss

We calculated the bending losses of the LMA-8 PCF for several different bend-
ing radii, and the results are shown in Fig. 8 (a) together with the experimen-
tal data. In this calculation, two different sizes of computation structure were
used: one with full cladding (the same as the real fiber used in the experiment),
and the other with only a central part of the cladding. In most of the mode
analyses, the latter has been enough for accurate simulation. However, in the
bending loss analyses, the inclusion of full cladding was found to be essential
to reproduce the details of the experimental data.

To understand the size effect of the computational domain, the dynamics of
the optical field were observed in animations in Figs. 8 (b), (c), (d) and (e). In
Fig. 8(b) and (c), one can observe a propagating field radiated from the center
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toward the outside of the bend while the stationary core mode is blinking at its
optical frequency. This energy propagation across the fiber is the cause of the
bending loss. In Fig. 8 (d) and (e), the optical field in the holey cladding is not
a purely propagating wave, but rather a mixture of propagating and stationary
waves. This observation indicates the existence of optical back-reflection at the
boundary of the holey-cladding which forms a weak cavity between the core
and the boundary of holey cladding. The exceptionally large bending loss at
the radius of ∼ 4.5mm can be explained by a resonant coupling from the core
to the cavity. Analyses of the cladding boundary effect on the bending loss are
found in a previous report [18]. However, the FDTD simulation seems to be
superior to other methods since it enables the direct observation of the optical
field dynamics which provides better insight in investigation of the underlying
mechanisms.

This demonstration emphasizes the importance of the computational do-
main size in specific simulations.

5. Simulation based on fiber images

It is often found that the structures of real PCFs have some irregularities
or imperfections due to fabrication errors, and that their optical properties
deviate from those expected based on simulations. Therefore the simulation
for real fiber structures rather than ideal ones is important especially when
the fiber contains large imperfections. One way to examine this effect is to
intentionally impose certain irregularities on the simulation structure of the
fiber, and investigate the level of fluctuation of optical properties as a function
of the degree of irregularities. In [19], this approach was used to investigate the
effect of PCF structural irregularities on birefringence. This kind of analysis
is useful for the statistical prediction of general behavior. However, it is not
applicable to the investigation of the exact optical properties of a given fiber
with specific imperfections.

Here, we introduce a method which enables the analysis of fibers based on actual
geometries. The new routine, added to our FDTD program, acquires an image
file of a PCF and converts it to a matrix of dielectric constants to use as an input
structure for the FDTD computation. Figure 9(a) shows a scanning electron
microscope (SEM) image of a fiber to be converted to a matrix representing
the simulation structure. Our program defines the silica/air boundaries based
on the brightness of pixels, using a criterion set by a user. Figure 9(b) shows
the computation structure and its simulation results. For comparison, the
simulation was also performed for an ideal fiber structure for which the air
holes were perfectly circular and arranged in a periodic lattice. In the ideal
structure, the pitch and the hole size were defined by the average values of the
real structures. It is clearly seen in Fig. 9(b) that the field intensity distribution
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of the fundamental mode is asymmetric due to the elliptical core shape, whereas
it is symmetric in the ideal structure shown in Fig. 9(c).

The most important characteristic induced by the asymmetry of the core
geometry was unintentional birefringence. Figure 11(d) shows a part of the dis-
persion curve with splitting of the two polarization modes in the real PCF. The
birefringence of Δn ∼ 8x10−3 observed here is higher than that of conventional
polarization-maintaining fibers. The dispersion slopes of the two modes were
also slightly different. The birefringence Δn calculated from the ideal structure
was about 10−4, which is below the numerical error of the FDTD method.

Using this technique, one can obtain the various optical properties discussed
thus far for a given fiber. Our approach is expected be very useful in the analysis
of experimental results associated with imperfect fibers.

6.Conclusions

We investigated FDTD techniques applicable to the analyses of photonic crys-
tal fibers, showed that the accuracy of the computation can be enhanced by
proper design of the simulation scheme. The simulation procedures and inter-
pretation of the simulation results were described in detail. We investigated
influence of various simulation parameters upon the accuracy of the simulation
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results and computation loads, and the optimization of those parameters was
discussed. We demonstrated the accurate calculation of bending loss with good
agreement with experimental data by including the full cladding structures in
the simulation. We also introduced a new function in the FDTD code, which
acquires image file of a real fiber and converts it to a fiber geometry data for
FDTD. This function enables us to investigate the optical property of a real
fiber with imperfect geometries. Our study leads us to the conclusion that
the FDTD method is an effective and powerful tool for investigation of micro-
structured or photonic crystal fibers as well as 3D micro cavities, if the simula-
tion is properly planned. It enables us to directly peep into the electromagnetic
waves flowing in micro systems, which provides us intuitive understating of op-
tical properties. The high reliability of the simulation results come from its
straightforward and rigid algorithm. The rapid advancement of the computer
technology is also accelerating the wide applications of the FDTD method of
which performances are highly dependent of the computing power.
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