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Abstract

In this paper, we consider the following initial-boundary value prob-
lem

(P )

⎧⎨
⎩

ut(x, t) = εLu(x, t) + f(u(x, t)) in Ω × (0, T ),
∂u(x,t)

∂N
+ b(x, t)g(u(x, t)) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, ε is

a positive parameter, L is an elliptic operator, b(x, t) ≥ 0 in ∂Ω × R+,
g ∈ C1(R), g(0)=0, f(s) is a positive, increasing, convex function for
positive values of s and

∫∞ ds
f(s) < ∞. Under some assumptions, we show

that the solution of the above problem blows up in a finite time and its
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blow-up time goes to the one of the solution of the following differential
equation {

α
′
(t) = f(α(t)), t > 0,

α(0) = M,

as ε tends to zero where M = supx∈Ω u0(x). We also extend the above
result to other classes of nonlinear parabolic equations with nonlinear
boundary conditions. Finally, we give some numerical results to illustrate
our analysis.

1 Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. Consider the

following initial-boundary value parabolic problem associated to the following
differential equation

ut(x, t) = εLu(x, t) + f(u(x, t)) in Ω × (0, T ), (1)

∂u(x, t)
∂N

= −b(x, t)g(u(x, t)) on ∂Ω × (0, T ), (2)

u(x, 0) = u0(x) in Ω, (3)

which models the temperature distribution of a large number of physical phe-
nomena from physics, chemistry and biology. The term f(s) is a positive, in-
creasing, convex function for positive values of s,

∫∞ ds
f(s) < +∞, g(s) ∈ C1(R),

g(0)=0, b(x,t) is nonnegative and continuous in Ω × R+,

∂u

∂N
=

N∑
i,j=1

aij(x) cos(ν, xj)
∂u

∂xj
,

Lu =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
,

where the coefficient aij(x) ∈ C1(Ω) satisfy the following inequality

N∑
i,j=1

aij(x)ξiξj ≥ C|ξ|2 for ξ ∈ R
N , C > 0, aij = aji,

ν is the exterior normal unit vector on ∂Ω, ε is a positive parameter.
The initial data u0 is a nonnegative and continuous function in Ω. Here (0,T)
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is the maximal time interval of existence of the solution u. The time T may be
finite or infinite. When T is infinite, we say that the solution u exists globally.
When T is finite, the solution u develops a singularity in a finite time, namely

lim
t→T

‖u(x, t)‖∞ = +∞,

where ‖u(x, t)‖∞ = maxx∈Ω̄ |u(x, t)|. In this last case, we say that the solution
u blows up in a finite time and the time T is called the blow-up time of the
solution u.

Definition 1.1. we say that the solution u of (1.1)-(1.3) blows up in a finite
time, if there exist a finite time T such that ‖u(·, t)‖∞ <∞ pour t ∈ [0, T ) but

lim
t→T

‖u(·, t)‖∞ = ∞,

where ‖u(·, t)‖∞ = supx∈Ω |u(x, t)|. and the time T is called the blow-up time
of the solution u, when T is infinite, we say that the solution u exists globally.

Solutions of semilinear reaction diffusion equations which blow up in a finite
time have been the subject of investigation of many authors (see [1], [2], [7],[9],
[12], [13], [16-18], [23] and the references cited therein). In particular the above
problem has been studied by a lot of authors and by standard methods based
on the maximum principle, local existence, uniqueness, blow-up and global
existence have been treated (see [11], [26]]).

In this paper, we are interesting in the asymptotic behavior of the blow-up
time when ε is small enough.

Our work was motivated by the paper of Friedman and Lacey in [7], where
they have considered the following initial-boundary value problem

ut = εΔu+ g(u) in Ω × (0, T ), (4)

u = 0 on ∂Ω × (0, T ), (5)

u(x, 0) = u0(x) ≥ 0 in Ω, (6)

where g(s) is a positive, increasing, convex function for the nonnegative values
of s,

∫ +∞
0

ds
g(s) < +∞. The initial datum u0 is a positive and continuous

function in Ω.
Where they have considered the problem (1.1)-(1.3) in the case where the

operator L is replaced by the Laplacian and the nonlinear boundary conditions
is replaced by the Dirichlet boundary conditions.

Under some additional conditions on the initial datum, they have shown
that proved that when ε is small enough the solution u of (1.1)-(1.3) blows
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up in a finite time and its blow-up time goes to the one of the solution of the
following differential equation

α
′
(t) = f(α(t)), α(0) = M, (7)

as ε tends to zero where M = supx∈Ω u0(x).
Let us notice that the result of Friedman and Lacey holds when f(0)¿0, but they
have noticed that if the solution increases with respect to the second variable,
it is possible that their result holds for f(0)=0. The proof in [7] is based on
the construction of upper and lower solutions and it is difficult to extend the
method in [7] to our problem. In this paper, we obtain a similar result for the
problem described in (1.1)-(1.3) using both a modification of Kaplan’s method
(see [10]) and a method based on the construction of upper solutions. Our
paper is written in the following manner. In the next section, under some
conditions, we show that the solution u of (1.1)-(1.3) blows up in a finite time
and its blow-up time goes to the one of the solution of the differential equation
defined in (1.7) as ε goes to zero. In the third section, we extend the result of
Section 2 to other classes of parabolic problems. Finally, in the last section, we
give some numerical results to illustrate our analysis.

2 The blow-up solutions in reaction diffusion

equation

In this section, under some assumptions, we show that the solution u of (1.1)-
(1.3) blows up in a finite time and its blow-up time tends to the one of the
solution of the differential equation defined in (1.7) as ε tends to zero. Before
starting, let us recall a well known result. Consider the following eigenvalue
problem

−Lϕ = λϕ in Ω, (8)

ϕ = 0 on ∂Ω, (9)

ϕ > 0 in Ω. (10)

It is known that the above problem has a solution (ϕ, λ) such that λ > 0 and
we can normalize ϕ so that

∫
Ω ϕdx = 1.

Now, let us state our first result on the blow-up.

Theorem 2.1. Suppose that u0(x) = 0 and f(0)¿0. Let ε be such that ε < 1
A

where A = λ
∫∞
0

ds
f(s) . Then the solution u of (1.1)-(1.3) blows up in a finite

time and its blow-up time T obeys the following relation

T = T0(1 + εA) + o(ε) as ε→ 0 (11)
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where T0 =
∫∞
0

ds
f(s)

is the blow-up time of the solution α(t) of the differential
equation defined in (1.7).

Proof. Since (0,T) is the maximal time interval of existence of the solution
u, our aim is to show that T is finite and satisfies the above relation. The fact
that the initial data u0 is nonnegative in Ω implies that the solution u is also
nonnegative in Ω× (0, T ) owing to the maximum principle. Let D be a domain
such that D̄ ⊂ Ω and let w(x,t) be the solution of the following initial-boundary
value problem.

wt(x, t) − εLw(x, t) = f(w(x, t)) in D× (0, T ∗), (12)

w(x, t) = 0 on ∂D × (0, T ∗), (13)

w(x, 0) = 0 in D, (14)

where (0, T ∗) is the maximal time interval of existence of w. Consider the
following eigenvalue problem

−Lψ = λDψ in D, (15)

ψ = 0 on ∂D, (16)

ψ > 0 in D. (17)

It is well known that the above eigenvalue problem has a solution (ψ, λD) such
that 0 < λD < λ. Without loss of generality, we may suppose that

∫
D
ψdx = 1.

Introduce the function v(t) defined as follows

v(t) =
∫

D

ψ(x)w(x, t)dx.

Take the derivative of v in t and use (2.5) to obtain

v′(t) = ε

∫
D

ϕ(x)Lw(x, t)dx+
∫

D

f(w)ϕ(x)dx.

Applying Green’s formula, we arrive at

v′(t) = ε

∫
D

wLϕdx+
∫

D

f(w)ϕdx.

It follows from (2.8) and Jensen’s inequality that

v′(t) ≥ −ελDv(t) + f(v(t)) ≥ −ελv(t) + f(v(t)),
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because 0 < λD < λ. Obviously, we have

v′(t) ≥ f(v(t))
(

1 − ελv(t)
f(v(t))

)
.

It is not hard to see that∫ ∞

0

ds

f(s)
≥ sup

t≥0

∫ t

0

ds

f(s)
≥ sup

t≥0

t

f(t)

because f(s) is an increasing function for s¿0. We deduce that

v′(t) ≥ (1 − εA)f(v(t)), for t ∈ (0, T ∗).

This estimate may be rewritten sa follows

dv

f(v)
≥ (1 − εA)dt for t ∈ (0, T ∗).

Integrate the above inequality over (0, T ∗) to obtain

T ∗ ≤ 1
1 − εA

∫ ∞

0

ds

f(s)

which implies that the solution w blows up at the time T ∗ because the quantity
on the right hand side of the above inequality is finite. Since the solution u is
nonnegative in Ω × (0, T ), it is easy to see that

ut − εLu − f(u) ≥ wt − εLw − f(w) in D × (0, T 0),

u ≥ w on D × (0, T 0),

u(x, 0) ≥ w(x, 0) in D,

where T 0 = min{T, T ∗}. It follows from the maximum principle that u ≥ w in
D× (0, T 0). If T > T ∗ then we have

lim
t→T∗ ‖u(x, t)‖∞ = ∞

which is a contradiction. Consequently

T ≤ T ∗ ≤ 1
(1 − εA)

∫ ∞

0

ds

f(s)
. (18)

On the other hand, setting

z(x, t) = α(t) in Ω̄ × (0, T0),
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it is not hard to see that⎧⎨
⎩

zt(x, t)− εLz + f(z(x, t)) = 0 in Ω × (0, T0),
∂z
∂N + b(x, t)g(z) ≥ 0 on ∂Ω × (0, T0),
z(x, 0) = 0 in Ω.

The maximum principle implies that 0 ≤ u(x, t) ≤ z(x, t) = α(t) in Ω ×
(0, T∗), where T∗ = min{T, T0}. It follows that T ≥ T0. Indeed suppose that
T < T0 which implies that 0 ≤ u(x, T ) ≤ α(T ) < +∞ which is a contradiction
because (0,T) is the maximal time interval of existence of the solution u. We
deduce that

T ≥ T0 =
∫ ∞

0

ds

f(s)
. (19)

Apply Taylor’s expansion to obtain 1
1−εA

= 1 + εA + o(ε). Use (2.11),(2.12)
and the above relation to complete the rest of the proof. �
Now let us consider the case where the initial data is not null. We have the
following result.

Theorem 2.2. Let f(0)=0. Suppose that supx∈Ω u0(x) = M > 0 and let ε be
such that ε < 1

A
where A = λM

2f( M
2 )
. Then the solution u of (1.1)-(1.3) blows up

in a finite time and its blow-up time T satisfies the following relation

T = T0(1 + εA) +
ε

f(M
2

)
+ o(ε) as ε→ 0

where T0 =
∫∞

M
ds

f(s)
is the blow-up time of the solution α(t) of the differential

equation defined in (1.7).

Proof From the maximum principle, there exists a ∈ Ω such that M =
u0(a). Since u0 is continuous in Ω, there exists δ > 0 such that

u0(x) ≥M − ε in B(a, δ)

for ε small enough, where B(a, δ) = {x ∈ Ω : ‖x− a‖∞ < δ} and B(a, δ) ⊂ Ω.
Consider the eigenvalue problem below

−Lψ = λεψ in B(a, δ),

ψ = 0 on ∂B(a, δ),

ψ > 0 in B(a, δ).
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The above problem has a solution (ψ, λε) where 0 < λε < λ and we can
normalize ψ so that

∫
B(a,δ)

ψdx = 1.
Let w(x,t) be the solution of the following initial-boundary value problem⎧⎨

⎩
wt(x, t)− εLw(x, t) − f(w(x, t)) = 0 in B(a, δ) × (0, T ∗)
w(x, t) = 0 on ∂B(a, δ) × (0, T ∗),
w(x, 0) = u0(x) in B(a, δ),

where (0, T ∗) is the maximal time interval of existence of the solution w. In-
troduce the function v(t) defined as follows

v(t) =
∫

Ω

w(x, t)ψ(x)dx.

As in the proof of Theorem 2.1, we get

v′(t) ≥ −ελεv(t) + f(v(t)) ≥ −ελv(t) + f(v(t)),

because 0 < λε < λ. We deduce that

v
′
(t) ≥ f(v(t))

(
1 − ελv(t)

f(v(t))

)
. (20)

When t=0, we see that v
′
(0) > 0. Therefore, we have v

′
(t) > 0 for t ∈ (0, T ∗).

Indeed let t0 be the first t¿0 such that v′(t) > 0 for t ∈ (0, t0) but v′(t0) = 0
which implies that

v
′
(t0) ≥ f(v(t0))

(
1 − ελv(t0)

f(v(t0))

)
.

Since f(s) is a convex function for the positive values of s and f(0)=0, then f(s)
s

is an increasing function for the positive values of s. The fact that v(t0) ≥
v(0) ≥M − ε ≥ M

2
implies that

0 = v
′
(t0) ≥ f(v(t0))

(
1 − ελM

2f(M
2 )

)
> 0

which is a contradiction. We deduce that v(t) ≥ v(0) for t ∈ (0, T ∗). Since
v(0) ≥M − ε ≥ M

2
, we arrive at

v
′
(t) ≥ f(v(t))

(
1 − ελM

2f(M
2

)

)
,

which implies that

v
′
(t) ≥ (1 − εA)f(v(t)) in (0, T ∗). (21)
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We observe that

dv

f(v)
≥ (1 − εA)dt.

Integrate this inequality over (0, T ∗) to obtain

T ∗ ≤ 1
(1 − εA)

∫ ∞

v(0)

ds

f(s)
≤ 1

(1 − εA)

∫ ∞

M−ε

ds

f(s)
.

This implies that the solution w blows up in a finite time because the quantity
on the right hand side of the second inequality is finite. On the other hand by
the maximum principle, we have u ≥ 0 in Ω × (0, T ), which implies that

ut − εLu − f(u) ≥ wt − εLw − f(w) in B(a, δ) × (0, T∗),

u ≥ w on ∂B(a, δ) × (0, T∗),

u(x, 0) ≥ w(x, 0) in B(a, δ),

where T∗ = min{T, T ∗}. It follows from the maximum principle that

u(x, t) ≥ w(x, t) in B(a, δ) × (0, T∗),

which implies that

T ≤ T ∗ ≤ 1
1 − εA

∫ ∞

M−ε

ds

f(s)
. (22)

Indeed, suppose that T > T ∗. We have ‖u(x, T ∗)‖∞ > ‖w(x, T ∗)‖∞ = +∞.
But this is a contradiction because (0, T ) is the maximal time interval of exis-
tence of the solution u. We observe that∫ ∞

M−ε

ds

f(s)
=
∫ ∞

M

ds

f(s)
+
∫ M

M−ε

ds

f(s)
≤
∫ ∞

M

ds

f(s)
+

ε

f(M − ε)
.

because f(s) is an increasing function for the positive values of s. The fact that
f(M − ε) ≥ f(M

2 ) implies that∫ ∞

M−ε

ds

f(s)
≤
∫ ∞

M

ds

f(s)
+

ε

f(M
2 )
. (23)

Setting z(x, t) = α(t) in Ω̄ × (0, T0), it is not hard to see that⎧⎨
⎩

zt − εLz − f(z) = 0 in Ω × (0, T0),
∂z
∂N

+ b(x, t)g(z) ≥ 0 on ∂Ω × (0, T0),
z(x, 0) ≥ u0(x) in Ω.
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The maximum principle implies that 0 ≤ u(x, t) ≤ z(x, t) = α(t) in Ω× (0, T 0)
where T 0 = min{T0, T}. We deduce that

T ≥ T0

∫ ∞

M

ds

f(s)
. (24)

Indeed, suppose that T0 > T, which implies that α(T ) ≥ ‖u(x, T )‖∞ = +∞.
But this is a contradiction because (0, T0) is the maximal time interval of
existence of the solution α(t). Apply Taylor’s expansion to obtain 1

1−εA
=

1 + εA+ o(ε). Use (2.15)-(2.16) and the above relation to complete the rest of
the proof. �
Remark 2.1. Theorem 2.2 remains valid when f(0)¿0 if we take A = λ

∫∞
0

ds
f(s) .

Indeed using (2.13) and the fact that
∫ +∞
0

ds
f(s) ≥ sups≥0

s
f(s) we obtain the in-

equality in (2.14). Now, reasoning as in the proof of Theorem 2.1, we obtain
the desired result.

3 Estimates Of The Other blow-up Times

In this section, we extend the previous results considering the following
initial-boundary value problem

(ϕ(u))t = εLu + f(u) in Ω × (0, T ), (25)

∂u

∂N
+ b(x, t)g(u) = 0 on ∂Ω × (0, T ), (26)

u(x, 0) = u0(x) in Ω, (27)

where ϕ(s) is a nonnegative and increasing function for the positive values of
s. In addition

∫∞ ϕ′(s)
f(s) <∞. We have the following results using the methods

described in the proofs of the above theorems.
Theorem 3.1. Let f(0)

ϕ′(0) > 0. Suppose that ε < 1
B where B = λ

∫∞
0

ϕ′(s)
f(s) ds.

Then the solution u of (3.1)-(3.3) blows up in a finite time and its blow-up time
T satisfies the following relation.

T = T0(1 + εB) + o(ε) as ε→ 0

where T0 =
∫∞
0

ϕ′(s)
f(s) ds is the blow-up time of the solution α(t) of the differential

equation defined as follows{
ϕ′(α(t))α′(t) = f(α(t)), t > 0,
α(0) = M ,

where M = supx∈Ω u0(x).
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Theorem 3.2. Assume that lims→0
f(s)
ϕ′(s) = 0. Suppose that supx∈Ω u0(x) =

M > 0and let ε be such that ε < 1
A where A = λϕ′( M

2 )

f( M
2 )

. Then the solution u of
(3.1)-(3.3) blows up in a finite time and its blow-up time T satisfies

T = T0(1 + εA) +
εϕ′(M

2 )
f(M

2 )
as ε→ 0

where T0 =
∫ +∞

M
ds

f(s) is the blow-up time of the solution α(t) of the differential
equation defined as follows{

ϕ′(α(t))α′(t) = f(α(t)), t > 0
α(0) = M ,

where M = supx∈Ω u0(x).

4 Numerical experiments

In this section, we consider the radial symmetric solution of the boundary value
problem :

ut = εΔu+ eu in B × (0, T ),

∂u

∂ν
+ u = 0 on S × (0, T ),

u(x, 0) = u0(x) in B,

where B = {x ∈ R
N/|x| < 1, }, S = {x ∈ R

N/|x| = 1, }. The above problem
may be rewritten in the following form

ut = ε

(
urr +

N − 1
r

ur

)
+ eu, r ∈ (0, 1), t ∈ (0, T ), (28)

ur(0, t) = 0, ur(1, t) + u(1, t) = 0, t ∈ (0, T ), (29)

u(r, 0) = u0(r), r ∈ (0, 1). (30)

Let I be a positive integer and let h = 1/I. Define the grid xi = ih, 0 ≤
i ≤ I and approximate the solution u of (4.1)-(4.3) by the solution U

(n)
h =

(U (n)
0 , · · · , U (n)

I )T of the following explicit scheme.

U
(n+1)
0 − U

(n)
0

Δtn
= εN

2U (n)
1 − 2U (n)

0

h2
+ eU

(n)
0 ,
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U
(n+1)
i − U

(n)
i

Δtn
= ε

⎛
⎝U

(n)
i+1 − 2U

(n)
i + Un

i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

⎞
⎠ + eU

(n)
i ,1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

Δtn
= εN

2U
(n)
I−1 − 2U

(n)
I

h2
− ε

(
2

h
+ (N − 1)

)
U

(n)
I + eU

(n)
I ,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where Δtn = min( h2

4Nε
, h2e−‖Un‖∞) with ‖Un)

h ‖∞ = sup0≤i≤I |Un
i |. Let us

notice that the condition Δtn ≤ h2

4hε
ensures the stability of the explicit scheme.

We also approximate the solution u of (4.1)-(4.3) by the solution U
(n)
h of the

implicit scheme below

U
(n+1)
0 − U

(n)
0

Δtn
= εN

2U (n+1)
1 − 2U (n+1)

0

h2
+ eU

(n)
0 ,

U
(n+1)
i − U

(n)
i

Δtn
= ε

⎛
⎝U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+

(N − 1)

ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h

⎞
⎠

+eU
(n)
i , 1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

Δtn
= εN

2U
(n+1)
I−1 − 2U

(n+1)
I

h2
− ε

(
2

h
+ (N − 1)

)
U

(n+1)
I + eU

(n)
I ,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where Δtn = h2e−‖Un
h ‖∞ .

The explicit scheme may be written as follows:

U
(n+1)
0 − U

(n)
0

Δtn
= εN

2U
(n)
1 − 2U

(n)
0

h2
+ eU

(n)
0 ,

U
(n+1)
i − U

(n)
i

Δtn
= ε

⎛
⎝U

(n)
i+1 − 2U

(n)
i + Un

i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

⎞
⎠ + eU

(n)
i ,

1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

Δtn
= εN

2U
(n)
I−1 − 2U

(n)
I

h2
− ε

(
2

h
+ (N − 1)

)
U

(n)
I + eU

(n)
I ,

U
(0)
i = ϕi, 0 ≤ i ≤ I,
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or

U
(n+1)
i − U

(n)
i

Δtn
= ε

⎛
⎝U

(n)
i+1 − 2U

(n)
i + Un

i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

⎞
⎠

+eU
(n)
i , 1 ≤ i ≤ I − 1,

U
(n+1)
i − U

(n)
i = Δtnε

⎛
⎝U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

⎞
⎠

+ΔtneU
(n)
i , 1 ≤ i ≤ I − 1,

or

U
(n+1)
i = U

(n)
i + Δtnε

⎛
⎝U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

⎞
⎠

+ΔtneU
(n)
i , 1 ≤ i ≤ I − 1,

or

U
(n+1)
i = U

(n)
i +

εΔtn

h2
U

(n)
i+1−

2εΔtn

h2
U

(n)
i +

εΔtn

h2
U

(n)
i−1+

ε(N − 1)Δtn

2ih2
U

(n)
i+1−

ε(N − 1)Δtn

2ih2
U

(n)
i−1

+ΔtneU
(n)
i , 1 ≤ i ≤ I−1,

or

U
(n+1)
i =

εΔtn
h2

(1 +
(N − 1)

2i
)U (n)

i+1 + (1 − 2
εΔtn
h2

)U (n)
i +

εΔtn
h2

(1 − (N − 1)
2i

)U (n)
i−1,

+ΔtneU
(n)
i , 1 ≤ i ≤ I − 1,

For i = 0, U (n+1)
0 = U

(n)
0 + ΔtnεN

2U
(n)
1 −2U

(n)
0

h2 + eU
(n)
0 , or

For i = 0, U (n+1)
0 = ΔtnεN(1 − 2

h2 )U (n)
0 + 2ΔtnεN

h2 U
(n)
1 + ΔtneU

(n)
0 ,

For i = 1, U (n+1)
1 = εΔtn

h2 (1 + (N−1)
2i )U (n)

2 + (1 − 2 εΔtn

h2 )U (n)
1 + εΔtn

h2 (1 −
(N−1)

2i
)U (n)

0 + Δtn + ΔtneU
(n)
1
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or
For i = 1,
U

(n+1)
1 =

(
(1 − 2 εΔtn

h2 )
)

U
(n)
1 +

(
εΔtn

h2 (1 +
(N−1)

2i
)
)

U
(n)
2 +

(
εΔtn

h2 (1 − (N−1)
2i

)
)

U
(n)
0

+ΔtneU
(n)
1 ,

For i = 2,
U

(n+1)
2 =

(
εΔtn

h2 (1 − (N−1)
2i

)
)

U
(n)
1 +

(
(1 − 2 εΔtn

h2 )
)

U
(n)
2 +

(
εΔtn

h2 (1 + (N−1)
2i

)
)

U
(n)
3 +

+ΔtneU
(n)
2 ,

For i = 3,
U

(n+1)
3 =

(
εΔtn

h2 (1 − (N−1)
2i

)
)

U
(n)
2 +

(
(1 − 2 εΔtn

h2 )
)

U
(n)
3 +(

εΔtn
h2 (1 +

(N−1)
2i

)
)

U
(n)
4 +ΔtneU

(n)
3 ,

...
For i = I − 1,

U
(n+1)
I−1 =

(
εΔtn

h2 (1 − (N−1)
2i

)
)

U
(n)
I−2 +

(
(1 − 2 εΔtn

h2 )
)

+
(

εΔtn
h2 (1 +

(N−1)
2i

)
)

U
(n)
I +

+ΔtneU
(n)
I ,

For i = I,

U
(n+1)
I =

(
(2εNΔtn

h2 )
)
U

(n)
I−1 +

(
(1 − 2εNΔtn

h2 )
)
U

(n)
I − εΔtn

(
2
h + (N − 1)

)
U

(n)
I +

eU
(n)
I ,

It leads us to the linear system below

U
(n+1)
i = AU

(n)
i +

(
F (n)

)
i

where A is a I × I tridiagonal matrix defined as follows

It implies that

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0 0 · · · 0
c0 a0 b0 0 · · ·

0
.. .

. . .
. . .

. . .

..

.
. . .

. . .
. . . b0

0 0 · · · c0 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with

a0 = 1 − 2
εΔtn
h2

,
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b0 =
εΔtn
h2

(1 +
(N − 1)

2i
), i = 1, ..., I − 2,

c0 =
εΔtn
h2

(1 − (N − 1)
2i

), i = 1, ..., I − 1,

(
F (n)

)
i
= ΔtneU

(n)
i

and A a three-diagonal matrix verifying the following properties:
Ai,i = 1 − 2 εΔtn

h2 > 0, 0 ≤ i ≤ I and Ai−1,i = εΔtn

h2 (1 − (N−1)
2i )

Ai,i+1 = εΔtn

h2 (1 + (N−1)
2i ), 2 ≤ i ≤ I − 2 so thatAi,i ≥

∑
i 
=j Ai,j

It follows that U (n)
h exists for n ≥ 0. In addition, since U (0)

h is nonnegative,
U

(n)
h is also nonnegative for n ≥ 0.

We need the following definition.

Definition 4.1. We say that the discrete solution U
(n)
h of the explicit scheme

or the implicit scheme blows up in a finite time if limn→∞ ‖U (n)
h ‖ = ∞ and the

series
∑∞

n=0 Δtn converges. The quantity
∑∞

n=0 Δtn is called the numerical
blow-up time of the discrete solution U

(n)
h .

Let us notice that in the explicit scheme,the restriction on the time step
ensures the nonnegativity of the discrete solution. For the implicit scheme,
existence and nonnegativity are also guaranteed by standard methods (see for
instance [3]).

In the following tables, in rows, we present the numerical blow-up times, the
numbers of iterations n, the CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128. We take for the numerical blow-up
time Tn =

∑n−1
j=0 Δtj which is computed at the first time when

Δtn = |Tn+1 − Tn| ≤ 10−16.

The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical results for U (0)
i = 0

First case: N=2; ε = 1/10

Table 1: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method
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I Tn n CPUt s
16 1.004277 8007 18 -
32 1.002690 30616 132 -
64 1.002264 116826 1011 1.90
128 1.002143 444769 7469 1.82

Table 2: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method

I Tn n CPUt s
16 1.004375 8007 22 -
32 1.002714 30616 132 -
64 1.002270 116826 1464 1.90
128 1.002147 444770 7857 1.85

Second case: N=2; ε = 1/100

Table 3: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I Tn n CPUt s
16 1.001954 7986 18 -
32 1.000488 30521 85 -
64 1.000122 116405 841 2.00
128 1.000030 442906 6976 1.99

Table 4: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method

I Tn n CPUt s
16 1.001950 7988 17 -
32 1.000447 30531 88 -
64 1.000122 116446 768 2.00
128 1.000042 444535 68506 2.18

Third case: N = 3, ε = 1/10

Table 5: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method
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I Tn n CPUt s
16 1.005842 4508 11 -
32 1.004096 16625 71 -
64 1.003593 60869 500 1.80
128 1.003447 220034 3482 1.78

Table 6: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method

I Tn n CPUt s
16 1.005982 4509 12 -
32 1.004130 16626 67s -
64 1.003602 60869 713 1.81
128 1.003450 220036 3785 1.80

Fourth case: N = 3, ε = 1/100

Table 7: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I Tn n CPUt s
16 1.001954 4509 12 -
32 1.000488 16626 67 -
64 1.000122 60869 713 2.00
128 1.000030 220036 3785 1.99

Table 8: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method

I Tn n CPUt s
16 1.001950 4476 12 -
32 1.000447 16481 67 -
64 1.000122 60245 658 2.00
128 1.000030 218267 3600 1.99

Numerical results for U (0)
i = 20sin(iπh)

.

Here the term of the source eU
(n)
i is replaced by (U (n)

i )2. In this last case,
we take
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Δtn = min{ h2

4Nε
,

h2

‖U (n)
h ‖∞

},

for the explicit scheme and Δtn = h2

‖U
(n)
h ‖∞

for the implicit scheme

First case: N=2; ε = 1/10

Table 9: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I Tn n CPUt s
16 0.0525112 3763 8 -
32 0.052437 16649 56 -
64 0.052401 49040 550 1.26
128 0.052323 180378 3423 1.22

Table 10: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method

I Tn n CPUt s
16 0.052527 3763 11 -
32 0.052437 16649 56 -
64 0.052401 49040 550 1.32
128 0.052310 181289 3567 1.34

Second case: N=2; ε = 1/100

Table 11: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I Tn n CPUt s
16 0.050426 3721 8 -
32 0.050289 13447 56 -
64 0.050256 48112 400 2.05
128 0.050248 180092 3580 2.04

Table 12: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method
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I Tn n CPUt s
16 0.050428 3721 11 -
32 0.050290 13447 55 -
64 0.050256 48112 560 2.02
128 0.050247 180093 3357 1.92

Remark 4.1. If we consider the problem (1.1)-(1.3) in the case where the ini-
tial data is null and the reaction term f(u) = eu, it is not hard to see that the
blow-up time of the solution of the differential equation defined in (1.7) equals
one.

We observe from Tables 1-8 that when ε diminishes, the numerical blow-up
time decays to one. This result has been proved in Theorem 2.1.
When the initial data u0(x) = 20 sin(πx) and the reaction term f(u) = u2, we
find that the blow-up time of the solution of the differential equation defined in
(1.7) equals 0.05.
We discover from Tables 9-12 that when ε diminishes, the numerical blow-up
time decays to 0.05 which is a result proved in Theorem 2.3

In the following, we also give some plots to illustrate our analysis. In Figures
1 to 4, we can appreciate that the discrete solution blows up globally. Let
us notice that, theoretically, we know that the continuous solution blows up
globally under the assumptions given in the introduction of the present paper.
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Figure 1: Evolution of the discrete solu-
tion, source f(u) = eu, ε = 1/10, ϕi = 0,
I = 16 (implicit scheme).

Figure 2: Evolution of the discrete solu-
tion, source f(u) = eu, ε = 1/10, ϕi = 0,
I = 16 (explicit scheme).

Figure 3: Evolution of the discrete solu-
tion, source f(u) = eu, ε = 1/100, ϕi = 0,
I = 32 (implicit scheme).

Figure 4: Evolution of the discrete so-
lution, source f(u) = eu, ε = 1/100,
ϕi = 0,I = 32 (explicit scheme).

Figure 5: Evolution of the discrete solu-
tion, source f(u) = u2, N = 2; ε = 1/10,
ϕi = sin(iπh), I = 16 (implicit scheme).

Figure 6: Evolution of the discrete solu-
tion, source f(u) = u2, N = 23; ε = 1/10,
ϕi = sin(iπh), I = 16 (explicit scheme).
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Figure 7: Evolution of the discrete solu-
tion, source f(u) = u2, N = 2; ε = 1/10,
ϕi = sin(iπh), I = 16 (implicit scheme).

Figure 8: Evolution of the discrete solu-
tion, source f(u) = u2, N = 2; ε = 1/10,
ϕi = sin(iπh), I = 16 (explicit scheme).

Figure 9: Profile of the discrete solution,
source f(u) = u2, N = 2; ε = 1/10, ϕi =
sin(iπh), I = 16 (implicit scheme).

Figure 10: Profile of the discrete solu-
tion, source f(u) = u2, N = 2; ε = 1/10,
ϕi = sin(iπh), I = 16 (explicit scheme).

Figure 11: Profile of the discrete solu-
tion, source f(u) = u2, N = 2; ε = 1/10,
ϕi = sin(iπh), I = 32 (implicit scheme).

Figure 12: Profile of the discrete solu-
tion, source f(u) = u2, N = 2; ε = 1/10,
ϕi = sin(iπh), I = 32 (explicit scheme).



176 On Initial Boundary Value Problem For...

Acknowledgment The author would like to express his deep gratitude to the
anonymous referees, the Area Editor, and the Editor-in-Chief for their valuable
comments and suggestions, which improved the paper.

References
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