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Abstract

An Interior-point algorithm with a line-search globalization is pro-
posed for solving the general nonlinear programming problem. At each
iteration, the search direction is obtained as a resultant of two orthogo-
nal vectors. They are obtained by solving two square linear systems. An
upper-triangular linear system is solved to obtain the Lagrange multiplier
vector. The three systems that must be solved each iteration are reduced
systems obtained using the projected Hessian technique. This fits well
for large-scale problems. A modified Hessian technique is embedded to
provide a sufficient descent for the search direction. Then the length of
the direction is decided by backtracking line search with the use of a
merit function to generate an acceptable next point.

The performance of the proposed algorithm is validated on some well-
known test problems and with three well-known engineering design prob-
lems. In addition, the numerical results are compared to other efficient
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methods. The results show that the proposed algorithm is effective and
promising.

1 Introduction

The general nonlinear programming problem (NLP) is the most general class
of optimization problems where it aims to minimize a nonlinear objective func-
tion subject to a set of nonlinear equality and inequality constraints. This
problem exists in applied mathematics, engineering, management and many
other applications. The importance of such problems encouraged considerable
research in this area to develop algorithms to solve such problems. One of the
most effective methods for solving these problems is the Newton interior-point
method due to its fast local convergence [12].

The start was in 1984 when Karmarkar [19] announced a fast polynomial-
time interior-point method for linear programming. Since that time, interior-
point methods have rapidly and noticeably advanced which impact on the evo-
lution of the theory and practice of constrained optimization. Many remark-
able primal-dual interior-point methods have proven merit for solving Problem
(NLP) [4, 13].

Das [9] and Dennis et al [10] generalized the use of the scaling matrix in-
troduced by Coleman and Li [8] for solving the unconstrained optimization to
Problem (NLP). El-Alem et al [12] proved the local and q-quadratic conver-
gence of the method. More recently, based on the interior point approach and
Coleman-Li scaling matrix, Abdelkader et al [1] suggested an interior-point
trust-region algorithm. The method decomposes the sequential quadratic pro-
gramming (SQP) subproblem into two trust region subproblems to compute
the normal and the tangential components of the trial step. The method was
proved to be globally convergent [2].

Other primal-dual interior-point algorithm was proposed by Jian et al [18].
This algorithm is a QP-free in which the QPs are replaced by systems of linear
equations with the same coefficient matrix that formed by using a ’working set’
technique to determine the active set.

Different algorithms were suggested based on the (SQP) method. In order
to obtain the search direction, Jian and et al [16, 17] with different techniques
solved a QP subproblem and a system of linear equation to obtain a master and
an auxiliary directions respectively. The auxiliary direction in [16] was needed
to improve the master direction to guarantee superlinearly convergence for the
method. On the other hand, Jian et al [17] needed an auxiliary direction to
overcome the Maratos effect [21]. The search direction is then a combination
of the two directions.

This paper is based on the works [1, 8, 9, 10, 12] and the concept suggested
by Goodman [14] which shows that the extended system of Newton method
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for equality constrained optimization (EQ) can be reduced into two systems
of lower dimensions. We extend Goodman’s concept to Problem (NLP) to
overcome the disadvantage of solving the extended system once at each iteration
especially for large-scale problems .

This paper is organized as follows. In Section 2, we set some preliminaries
and notations. The suggested algorithm is proposed in Section 3. The imple-
mentations of the proposed algorithm on some well-known test problems are
reported in Section 4. Section 5 contains concluding remarks.

2 Preliminaries

We consider the general nonlinear programming problem of the form:

Minimize f(x)
Subject to h(x) = 0

a � x � b,
(2.1)

where f : �n → �, h : �n → �m, a ∈ (� ∪ (−∞))n, b ∈ (� ∪ (+∞))n, and
m < n. The functions f and hi, i = 1, 2, ..., m are assumed to be at least twice
continuously differentiable. The Lagrangian function associated with Problem
(2.1) is :

L(x, λ, α, β) = l(x, λ) − αT (x − a) − βT (b − x),

where l(x, λ) = f(x) + λT h(x), λ ∈ �m is the Lagrange multiplier vector as-
sociated with the equality constraints and α, β ∈ �n are multipliers associated
with the bounds.

The KKT conditions for a point x∗ ∈ �n to be a solution for Problem (2.1)
are the existence of multipliers λ∗ ∈ �m, α∗, β∗ ∈ �n

+ such that (x∗, λ∗, α∗, β∗)
satisfies:

∇xl(x, λ) − α + β = 0
h(x) = 0
a � x � b
α(x − a) = 0
β(b − x) = 0.

(2.2)

Consider the Coleman-Li diagonal scaling matrix Dλ(x) (simplified by D(x))
whose diagonal elements are defined as:

d(i)(x) =

⎧⎨
⎩

√
x(i) − a(i), if (∇xl(x, λ))(i) ≥ 0 and a(i) > −∞,√
b(i) − x(i), if (∇xl(x, λ))(i) < 0 and b(i) < ∞,

1, otherwise.

The scaling matrix D(x) transforms the KKT conditions (2.2) to the con-
ditions that (x∗, λ∗) satisfies the following (n + m)× (n +m) nonlinear system
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of equations:
D2(x)∇xl(x, λ) = 0
h(x) = 0,

(2.3)

with the restriction that a � x∗ � b.

2.1 Extended System of Problem (2.1)

Let a � x � b. Newton’s method on the nonlinear system (2.3) gives:

[D2(x)∇2
xl(x, λ)+ diag(∇xl(x, λ))diag(η(x))]Δx + D2(x)∇h(x)Δλ =

= −D2(x)∇xl(x, λ)
∇h(x)T Δx = −h(x),

where η is the vector defined as η(i)(x) = ∂((di(x))2)
∂x(i) , i = 1, 2, ..., n. Or equiva-

lently:

η(i)(x) =

⎧⎨
⎩

1, if (∇xl(x, λ))(i) ≥ 0 and a(i) > −∞,

−1, if (∇xl(x, λ))(i) < 0 and b(i) < ∞,
0, otherwise.

This gives the following linear system:[
B D2(x)∇h(x)

∇h(x)T 0

] [
Δx
Δλ

]
= −

[
D2(x)∇xl(x, λ)

h(x)

]
, (2.4)

where B = D2(x)∇2
xl(x, λ) + diag(∇xl(x, λ))diag(η(x)). The restriction a <

x < b implies that the scaling matrix D(x) is necessarily nonsingular. Mul-
tiplying the first block of System (2.4) by D−1(x) and scaling the step by
Δx = D(x)s, arise the following extended system:[

H D(x)∇h(x)
(D(x)∇h(x))T 0

] [
s

Δλ

]
= −

[
D(x)∇xl(x, λ)

h(x)

]
, (2.5)

where H = D(x)∇2
xl(x, λ)D(x)+diag(∇xl(x, λ))diag(η(x)). After solving (2.5)

for s, we set Δx = D(x)s. But there is no guarantee that the next iterate point
will satisfy:

a < x + Δx < b. (2.6)

A damping parameter is needed to force (2.6). Das [9] uses the following
damping parameter at each iteration k:

τk = min
{

1, mini

{
c
(i)
k , d

(i)
k

}}
, (2.7)

where

c
(i)
k =

{
a(i)−x

(i)
k

Δx
(i)
k

if a(i) > −∞ & Δx
(i)
k < 0

1 otherwise,
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and

d
(i)
k =

{
b(i)−x

(i)
k

Δx
(i)
k

if b(i) < ∞ & Δx
(i)
k > 0

1 otherwise.
.

We multiply τk by 0.99 to insure that (2.6) will hold.

2.2 Overall Algorithm

We outline the interior-point Newton algorithm for solving Problem (2.1):

Algorithm 1.
Given x0 ∈ �n, such that a < x0 < b and λ0 ∈ �m. For k = 0, 1, ...,

until
convergence, do the following steps:

Step 1.
Compute Newton’s step sk and Δλk by solving System (2.5).
Set Δxk = D(xk)sk.

Step 2.
Compute the damping parameter τk using (2.7).

Step 3.
Set xk+1 = xk + 0.99τkΔxk and λk+1 = λk + Δλk.

This algorithm has a local q-quadratic rate of convergence [12] which is
the main advantage of it. But the disadvantage of using extended system
(2.5) to obtain Newton’s step is that the dimension of the system is directly
proportional with that of the problem. In the interior-point approach, we
add non-negative slack variables to the inequality constraints to convert them
to equalities. This technique will cause an increase to the number of both
variables and equality constraints. Consequently, the dimension of the problem
will increase. This disadvantage was the motivation of our work. In this paper,
we extend Goodman’s method [14] for problem (EQ) to problem (NLP) to
overcome this difficulty.

Finally to simplify the notations, we set Dk to denote D(xk), lk to denote
l(xk, λk), ..., and so on. We assume that (Dk∇hk) has a full column rank.

3 Proposed Algorithm

Consider the QR factorization of Dk∇hk as follows:

Dk∇hk =
[
Yk Zk

] [
Rk

0

]
, (3.8)

where Yk is an n × m matrix whose columns form an orthonormal basis for
the column space of (Dk∇hk), Zk is an n × (n − m) matrix with orthonormal
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columns spanning the null space of (Dk∇hk)T . i.e., ZT
k (Dk∇hk) = 0 and Rk

is an m × m nonsingular upper triangular matrix.
The null space matrix Zk obtained is not guaranteed to be smooth in the

region of interest. There are many techniques to enforce this when necessary
(see Nocedal and Overton [24] for more detail).

Multiply the first block of the extended system (2.5) by ZT
k , gives:[

ZT
k Hk

(Dk∇hk)T

]
sk = −

[
ZT

k Dk∇xlk
hk

]
. (3.9)

We decompose the step sk as follows:

sk = Ykuk + Zkvk, (3.10)

where Ykuk is the normal component and Zkvk is the tangential one. If we use
this decomposition of the step in system (3.9), the second block gives:

(Dk∇hk)T Ykuk = −hk, (3.11)

and the first block gives:

(ZT
k HkZk)vk = −ZT

k (Dk∇xlk + HkYkuk). (3.12)

There is no guarantee that the matrix (ZT
k HkZk) in system (3.12) be pos-

itive definite. Nocedal and Wright [25] disscussed strategies for modifying the
Hessian matrices and set some restrictions to these strategies to guarantee
sufficient positive definiteness. One of these strategies is called eignvalue modi-
fication. This strategy replaces (ZT

k HkZk) by a positive definite approximation
matrix Bk, in which all negative eigenvalues of (ZT

k HkZk) are shifted by a small
positive number but in some what larger than the machine accuracy ε. We set
ρ =

√
ε and μ = max(0, ρ− δmin), where δmin denotes the smallest eignvalue

of (ZT
k HkZk). Then, the modified matrix is of the form Bk = (ZT

k HkZk)+μI.
This modification generates positive definite approximation matrix Bk. This
is summarized in the following scheme:

Scheme 3.1. (Modifying (ZT
k HkZk))

Set Bk = ZT
k HkZk, ρ = 10−8

Evaluate the smallest eignvalue δmin of Bk If δmin < ρ then, Bk =
Bk + (ρ − δmin)I

The step is computed from (3.10) and is guaranteed to be descent as Dk∇hk

has a full column rank and Bk is positive definite. The unscaled step Δxk =
Dksk is computed. After that, we search among the search direction Δxk

the appropriate step size using the backtracking line-search algorithm [25].
During the backtracking procedure, we seek a step size γk ∈ (0, 1] that provides
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sufficient reduction in the merit function P (xk, rk) = fk+ rk

2
‖hk‖2, where r > 0

is a penalty parameter:

P (xk + γkΔxk) ≤ Pk + αγk∇P T
k Δxk, (3.13)

where α ∈ (0, 1
2
]. The backtracking algorithm used is as follows:

Scheme 3.2. (Backtracking line search)
Given α ∈ (0, 1

2 ]. Set γk = 1 While P (xk + γkΔxk) > Pk + αγk∇P T
k Δxk

Set γk = γk

2

At iteration k, to compute the Lagrange multiplier λk, Goodman [14], in
solving Problem (EQ), formed another QR factorization for ∇hk+1 after com-
puting the iterate point xk+1 to get Yk+1 and used it to solve for λk+1 the
following system:

∇hk+1λk+1 = −∇fk+1.

It gives rise to the following system to obtain λk+1:

Rk+1λk+1 = −Y T
k+1∇fk+1.

In our algorithm, we solve the first block of the extended system (2.5) for the
Lagrange multiplier step Δλk:

(Dk∇hk)Δλk = −(Dk∇xlk + Hksk).

Note, we use the same QR factorization (3.8) of Dk∇hk. Multiply both sides
by Y T

k , gives:
RkΔλk = −Y T

k (Dk∇xlk + Hksk). (3.14)

This is an upper-triangular system of equations that needs a back substitution
to obtain Δλk. Then, we set:

λk+1 = λk + Δλk.

We will call our proposed algorithm (EIPA). It stands for ”Efficient Interior-
Point Algorithm” for solving Problem (NLP). The detailed description of (EIPA)
is stated:

Algorithm 2. (EIPA)
Given x0 ∈ �n, such that a < x0 < b. Evaluate λ0 ∈ �m. Set ρ = 10−8,
r = 1, α = 10−4 and ε > 0. While ‖Dk∇xlk‖2 + ‖hk‖2 > ε, do the

following:
Step 1.(QR factorization for (Dk∇hk))

(a) Compute the scaling matrix Dk.
(b) Obtain the QR factorization for (Dk∇hk).
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Step 2.(Compute the step Δxk)
(a) Modify the projected Hessian (ZT

k HkZk) using scheme (3.1).
(b) Compute the orthogonal components uk and vk using (3.11)

and (3.12).
(c) Set sk = Ykuk + Zkvk, Δxk = Dksk.

Step 3.(Backtracking line search)
Evaluate the step length γk using scheme (3.2).

Step 4.(Interiorization)
(a) Compute the damping parameter τk using (2.7).
(b) Set xk+1 = xk + 0.99τkγkΔxk.

Step 4.(Update Lagrange multiplier λk+1)
(a) Compute Lagrange step Δλk by solving (3.14).
(b) Set λk+1 = λk + Δλk.

Step 5.(Update Dk, Hk and r)
Update both scaling matrix Dk and Hk. Set r = 10× r.
End while

4 Numerical Results

In this section, we report the results of our numerical implementations of EIPA
for solving Problem (NLP). The results show that EIPA is effective and promis-
ing. The code was written in MATLAB R2009b on Windows 10 with a ma-
chine epsilon 10−16. Different numerical implementations were performed to
show the computational efficiency of EIPA and its competitiveness relative to
other existing efficient algorithms. During the numerical implementations, the
constants are set as follows: ρ = 10−8, α = 10−4. The penalty parameter r = 1
at the first iteration and is updated using rk+1 = 10× rk. EIPA is terminated
successfully if the termination criterion is satisfied. On the other hand, if 500
iterations were completed without satisfying the termination condition, it is
called a failure. The following table describes the abbreviations that are used
during our implementations:

4.1 Comparison with Established Algorithms

We set some comparisons between EIPA and other algorithms using test prob-
lems from Hock-Schittkowski Collection [15]. The initial points and the termi-
nating tolerance are chosen to be the same as those in the compared algorithms.
In Table 4.2 results of EIPA using test problems from [15] are listed with those
from IPTRA [1]. EIPA demonstrated competitiveness with IPTRA [1]. The
number of NF in EIPA is larger than that in IPTRA in some problems because
of the NF counted inside back-tracking trials. Table 4.3shows comparisons be-
tween EIPA and the algorithm in [18]. We refer to this method as ALGO1.
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Table 4.1 The abbreviations used in numerical results
Abbreviation Description

HS The name of the problem as in Hock-Schittkowski-Collection [15]
n Number of variables of the problem
me Number of equality constraints
mi Number of inequality constraints
NI Number of iterations
NF Number of function evaluations
FV The final value of the objective function
AC The value of ‖Dk∇xlk‖ + ‖hk‖ at the solution
CPU The CPU time in seconds
– Data is not available

The results show that EIPA is obviously better than ALGO1 in almost all
reported test problems. In Table 4.4,the performance of EIPA is compared
against other algorithms based on the ideas of sequential quadratic program-
ming, which are SNQP [17], and ALGO2 [16]. The numerical results show
that EIPA succeeded to obtain the lower NI, NF and the CPU time relative to
SNQP [17], and ALGO3 [16] in almost all reported test problems.

4.2 Classical Engineering Design Problems

To validate the proposed algorithm EIPA, we use three well-known engineer-
ing design problems which are tension/compression spring design problem [5],
welded beam design problem [7] and multistage heat exchanger design problem
[6]. The outputs of design variables and the optimal solution of those prob-
lems produced when applying EIPA are compared with those obtained by both
mathematical and heuristic approaches.

4.2.1 Tension/Compression Spring Design Problem

This problem aims to minimize the weight f of the spring (as shown in Fig.
4.1) subject to constraints on minimum deflection, shear stress, surge frequency,
limits on outside diameter and on design variables. The problem consists of
three decision variables which are mean coil diameter D, wire diameter d and
number of active coils N . The mathematical formulation is found in Arora [5].

Table 4.5 shows the comparison of the results of the problem obtained from
EIPA and from other approaches as Gravitational Search Algorithm GSA [23],
Grey Wolf Optimizer GWO [22], Chaotic Grey Wolf Optimizer CGWO [20],
Interior-Point Trust-Region Algorithm IPTRA [1] and Constrained Guided
Particle Swarm Optimization CGPSO [3]. From the results, it can be seen
that EIPA outperforms the best solution of the indicated algorithms.
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Table 4.2 Numerical comparisons between EIPA and IPTRA

Prob. n/me/mi IP Code NI NF AC CPU

HS17 2/0/5 (0, 1)T EIPA 51 207 9.8831e − 006 0.069
IPTRA 7 8 9.8648e − 009 0.045

HS21 2/0/5 (5, 2)T EIPA 6 7 8.2924e − 012 0.007
IPTRA 4 5 4.0984e − 014 0.027

HS24 2/0/5 (1, 0.5)T EIPA 17 22 4.6769e − 009 0.044
IPTRA 5 6 – 0.098

HS30 3/0/7 (2, 1, 1)T EIPA 4 5 2.7925e − 009 0.009
IPTRA 5 6 5.4610e − 008 0.030

HS37 3/0/8 (10, 10, 10)T EIPA 5 6 5.4319e − 009 0.007
IPTRA 7 8 8.6735e − 007 0.068

HS41 4/1/8 (0.5, 0.5, 0.5, 1)T EIPA 2 3 9.6000e − 019 0.004
IPTRA 5 6 1.4168e − 008 0.032

HS53 5/3/10 (−6, 2, 2, 2, 2)T EIPA 3 4 1.8848e − 010 0.005
IPTRA 4 5 8.0960e − 008 0.028

HS60 3/1/6 (2, 2, 2)T EIPA 6 7 4.7199e − 012 0.007
IPTRA 7 8 – 0.046

HS65 3/0/7 (1, 1, 0)T EIPA 46 198 3.3715e − 009 0.092
IPTRA 9 10 1.0674e − 010 0.050

HS71 4/1/9 (2, 4, 4, 2)T EIPA 6 7 9.6054e − 009 0.008
IPTRA 6 7 1.2910e − 010 0.041

HS74 4/3/10 (1, 1, 0, 0)T EIPA 8 68 4.6908e − 017 0.049
IPTRA 15 16 4.8247e − 007 0.105

HS75 4/3/10 (1, 1, 0, 0)T EIPA 8 9 3.1548e − 013 0.011
IPTRA 16 17 1.4066e − 009 0.094

Figure 4.1: Schematic diagram of tension/spring design

4.2.2 Welded Beam Design Problem

The objective of welded beam design problem (as shown in Fig. 4.2) is to min-
imize the cost subject to constraints on shear stress, bending stress, buckling
load on the bar, end deflection of the beam and other side constraints. The
problem consists of four variables namely, weld thickness h, length of bar at-
tached to the weld l, bars height t and bars thickness b. The formulation of
this problem is found in Coello [7].

Table 4.6 shows the results of the problem when applying EIPA in compar-
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Table 4.3 Numerical comparisons between EIPA and ALGO1

Prob. n/me/mi IP Code NI NF FV CPU

HS6 2/1/0 (6,6)T EIPA 3 6 0 0.005
ALGO1 9 364 2.4199e− 007 0.03

HS7 2/1/0 (0,1)T EIPA 5 10 −1.73205 0.006
2/1/0 ALGO1 8 15 −1.7320 0.01

HS9 2/1/0 (0,0)T EIPA 3 4 −0.49999 0.005
ALGO1 18 34 −0.49985 0.02

HS27 3/1/0 (0,0, 0)T EIPA 3 6 0.04000 0.004
ALGO1 28 484 0.039958 0.05

HS28 2/0/5 (0,0, 0)T EIPA 1 2 2.4651e− 032 0.003
ALGO1 11 38 7.5674e− 008 0.01

HS29 3/0/1 (1,1, 1)T EIPA 10 19 −22.627417 0.011
ALGO1 11 24 −22.627 0.01

HS32 3/1/4 (0.1,0.7,0.1)T EIPA 8 9 1.00000 0.011
ALGO1 19 33 0.98818 0.02

HS33 3/0/5 (0,0, 3)T EIPA 14 17 −3.99999 0.048
ALGO1 15 20 −4.5178 0.02

HS40 4/3/0 (2,−1, 0,1)T EIPA 8 11 −0.2500000 0.009
ALGO1 49 108 −0.25000 0.05

HS42 4/2/0 (1,1, 1,1)T EIPA 4 55 13.8577330 0.042
ALGO1 36 70 13.883 0.03

HS43 4/0/3 (0,0, 0,0)T EIPA 15 91 −44.000000 0.005
ALGO1 12 29 −44.000 0.02

HS48 5/2/0 (3,5,−3,2,−2)T EIPA 1 2 2.4651e− 030 0.003
ALGO1 21 55 3.1361e009 0.02

HS51 5/3/0 (2.5,0.5,2,−1, 0.5)T EIPA 1 2 1.7379e− 030 0.004
ALGO1 29 132 2.2808e005 0.03

HS52 5/3/0 (1,−0.5,−1, 0, 1)T EIPA 1 2 5.3266475 0.003
ALGO1 31 45 5.2930 0.03

HS56 7/4/0 (1,1, 1, a, a, a, b)T EIPA 4 5 −3.45600 0.007
ALGO1 21 43 −2.6183 0.06

HS62 3/1/6 (0.7,0.2,0.1)T EIPA 12 13 −26272.5 0.031
ALGO1 8 19 −26273 0.02

HS81 5/3/10 (−1.7,1,1.5,−0.8,−0.8)T EIPA 5 6 0.0539468 0.009
ALGO1 19 37 0.064109 0.05

HS93 6/0/8 (5.5,4.4,12,11.8,0.7,0.8)T EIPA 13 74 135.075 0.065
ALGO1 21 43 136.29 0.04

HS100 7/0/4 (−1.7,1,1.5,−0.8,−0.8)T EIPA 21 67 680.630 0.031
ALGO1 8 22 680.63 0.02

Figure 4.2: Schematic diagram of welded beam design problem
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Table 4.4 Numerical comparisons between EIPA, ALGO2 and SNQP

Prob. n/me/mi IP Code NI NF FV CPU

HS12 2/0/1 (6, 6)T EIPA 7 8 -30.0000 0.007
ALGO2 20 41 -30.0000 0.06
SNQP 19 29 -29.9999 –

HS29 3/0/1 (−4,−4,−4)T EIPA 63 423 -22.6274 0.135
ALGO2 12 46 -22.6274 0.05
SNQP 13 42 -22.6274 –

HS31 3/0/7 (2, 4, 7)T EIPA 5 6 6.00000 0.006
ALGO2 17 309 6.00000 0.06
SNQP 13 42 -22.6274 –

HS33 3/0/6 (1, 4, 6)T EIPA 10 67 -4.58578 0.05
ALGO2 45 570 -4.58578 0.33
SNQP 23 116 4.58572 –

HS34 3/0/8 (2, 2, 2)T EIPA 8 9 -0.83403 0.008
ALGO2 15 166 -0.83403 0.06
SNQP – – – –

HS35 3/0/4 (1, 2, 3)T EIPA 10 11 0.11111 0.011
ALGO2 7 67 0.11111 0.03
SNQP 13 0 0.11111 –

HS66 3/0/8 (0, 0, 100)T EIPA 6 7 0.51816 0.008
ALGO2 64 1067 0.518163 0.48
SNQP – – – –

HS76 4/0/7 (1, 2, 3, 4)T EIPA 13 14 -4.68181 0.016
ALGO2 21 345 -4.68181 0.11
SNQP 16 0 -4.68181 –

ing with those of GSA [23], GWO [22], CGWO [20], IPTRA [1] and CGPSO
[3]. The results show that EIPA has the best optimum cost relative to the one
obtained by GSA [23], GWO [22] and CGWO [20]. However, EIPA is almost
the same as the one obtained from IPTRA [1] and CGPSO [3].

4.2.3 Multistage Heat Exchanger Design Problem

This problem is solved by Avriel et al [6]. The objective of this problem is to
minimize the sum of the heat transfer areas of the three exchangers (as shown
in Fig. 4.3) subject to six inequality constraints. The design variables are heat
transfer areas of the three exchangers A1, A2 and A3, the temperatures of the
main fluid produced from stage (1) and (2), T1 and T2 and temperatures of the
hot fluid entering the three heat exchangers t11, t21 and t31.

Table 4.7shows the results obtained by EIPA, the algorithm of Avriel et
al [6], BA [26] and IPTRA [1]. EIPA produces an optimum solution almost
the same as those from Avriel [6] and IPTRA [1]. However, EIPA has better
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Table 4.5 Numerical results of tension/compression spring design problem

Design GSA GWO CGWO IPTRA CGPSO EIPA
variables (2014) (2014) (2016) (2018) (2019)

D 0.050276 0.051690 0.052796 0.051689 – 0.106382
d 0.323680 0.323680 0.804380 0.356717 – 0.250000
N 13.525410 13.525410 2.0000000 11.288965 – 2.0000000

f 0.0127022 0.0127022 0.0119598 0.0126652 0.0126722 0.0113171

Table 4.6 Numerical results of welded beam design problem

Design GSA GWO CGWO IPTRA CGPSO EIPA
variables (2014) (2014) (2016) (2018) (2019)

h 0.1821 0.2056 0.343891 0.205727 – 0.205742
l 3.8569 3.4783 1.883570 3.470389 – 3.470664
t 9.0368 9.0368 9.03133 9.036980 – 9.036346
b 0.2057 0.2057 0.212121 0.205727 – 0.205742
f 1.8799 1.7262 1.72545 1.724884 1.72489 1.72494

Figure 4.3: Schematic diagram of multistage heat exchanger design problem

optimum solution than the one from BA [26].

5 Conclusion

In this paper, we have proposed a new algorithm for solving problem (NLP)
by extending Goodman’s method [14] for solving Problem (EQ) to Problem
(NLP). The main result of this paper is the formulation of the reduced linear
system of dimension (n×n) which we need to solve at each iteration to generate
the next iterate point. This result overcomes the disadvantage of solving the
extended system of dimension (n + m)× (n + m) suggested by Das [9], Dennis
et al [10] and El-Alem et al [12]. The numerical results carried out on some
standard test problems and three engineering design problems. The results
show efficiency of EIPA compared to other algorithms.
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Table 4.7.1 Numerical results of multistage heat exchanger design problem

Design Avriel BA IPTRA EIPA
variables (1971) (2012) (2018)

A1 567 579.30675 579.30668443 579.306684425
A2 1357 1359.97076 1359.970668094 1359.970668051
A3 5125 5109.97052 5109.9706669 5109.9706680
T1 181 182.01770 182.017699592 182.017699581
T2 295 295.60118 295.60117330 295.60117327
t11 219 217.98230 217.982300431 217.982300418
t21 286 286.41653 286.416526324 286.416526303
t31 395 395.60118 395.60117331 395.60117327
f 7049 7049.24803 7049.24801950 7049.24802052
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