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Abstract

In this paper we give the structure of the pr-ary image with respect
to an ordered basis of a linear block code over the semi-local Frobenius
ring Rp = Fpr + vFpr , where v2 = v or 1. A homogeneous weight on Rp

was constructed and distance bounds on the pr-ary image were derived.
Further we show examples of new codes that meet these bounds.

1 Introduction

A code of length n over the Galois field Fpr induces a code of length nr over
the base field Fp by using a basis of Fpr over Fp. Rabizzoni [11] used the said
construction and obtained an upper bound on the minimum Hamming distance
of the induced p-ary image of linear block codes over Fpr . Solé and Sison [13]
generalized this result for the minimum homogeneous distance of the pr- ary
image of linear block codes over the Galois ring GR(pr, m). In their paper,
they used the concept of subcodes and effective length in the formulation of
the generalized bound.

The Gray map in several rings were also used to study and construct bounds
on the images of codes especially binary images. The Singleton bound for a
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code C of length n over an alphabet of size q with minimum hamming distance
d is

d ≤ n− logq |C|+ 1. (1)

Dougherty and Shiromoto [7] developed a bound on the Lee weight of codes
over rings of order 4 similar to the Singleton bound given in (1) using the Gray
map preimages. They also gave bounds on the minimum distances based on the
rank of the code. Further, codes that meet these bounds were characterized in
terms of rank and distances. Zhu, Wang and Shi [15] studied the relationship
between cyclic codes over F2 +vF2 and binary cyclic codes using the Gray map
on the said ring. In addition, the generator matrix of the associated binary
code was derived and the Gray image of the dual of the code was also studied.
Betsumiya and Harada [2] gave improved upper bounds on minimum Hamming
and Lee weights of self-dual and Type IV self- dual codes over F2 +vF2 by using
a characterization which is based on codes obtained by the Gray map and the
Chinese Remainder Theorem. Further, using these bounds, they were able to
determine the highest minimum Hamming and Lee weights for such codes of
length up to 30. Dougherty, et. al. in [5] studied Type IV self- dual codes
over the commutative rings of order 4. Several results and bounds using the
Chinese Remainder Theorem and the Gray map were also presented.

Lately, codes over R3 = F3 + vF3 , v
2 = 1 are also gaining attention. Cen-

gellenmis [3] made a study similar to [15] on cyclic codes over the said ring.
They characterized the said codes using Gray map and the Chinese Remainder
Theorem. Further, in [4], he characterized codes over F3 using the Gray map
on R3. He proved that if n is odd, then every code over F3 which is the Gray
image of a linear cyclic code over R3 of length n is permutation equivalent to
a linear cyclic code.

In the present work, we consider codes over the finite semi-local Frobenius
ring Rp = Fpr + vFpr where v2 = v or 1, p prime and r ∈ N. The pr- ary
images of the block code were obtained by defining a map from Rp to F2

pr with
respect to an ordered basis of Rp over Fpr . Further, we gave bounds on the
minimum Hamming distance of pr- ary images of linear block codes over Rp in
terms of different parameters such as length, rank, cardinality, and minimum
Hamming distance of the block code.

The material is organized as follows. Section 2 gives definitions and the-
orems that are essential in this study. Section 3 presents the main results of
this study. The structural properties of the cross product F2

pr were studied
in Section 3.1 while a discussion on the structural properties of the semi-local
ring Rp can be found in Section 3.2. The Bachoc weight on Fp + vFp and the
homogeneous weight on Rp were derived in Section 3.3. Linear block codes
and subcodes over Rp and bounds on the minimum Hamming distance of the
block code were presented in Section 3.4. The pr- ary images of linear block
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codes over Rp were introduced in Section 3.5 and bounds on minimum Ham-
ming distance of these images were constructed in Section 4. The last section
illustrates examples of codes that meet these bounds.

2 Preliminaries and Definitions

Throughout this discussion, we assume that R is a commutative ring with
unity 1 �= 0 unless otherwise stated. In addition, we let p be a prime number
and r ∈ N.

2.1 The Galois field Fpr and the Trace Map

Let f(x) be an irreducible polynomial over the field Zp with degree r and let
α be a root of f . Then the Galois field Fpr is given by the set

Fpr = {a0 + a1α+ a2α
2 + . . .+ ar−1α

r−1 | ai ∈ Zp} .

The field Fpr has cardinality pr and characteristic p.

Consider the Galois fields Fpr and Fp. The trace function tr is defined by

tr : Fpr → Fp

tr(α) = α+ αp + ...+ αpr−1

for α ∈ Fpr .

It is a fact that for any x, y ∈ Fpr , tr(x + y) = tr(x) + tr(y) and that tr
takes on each value in Fp equally often, that is, pr−1 times.

2.2 Semi-local rings and the Chinese Remainder Theo-
rem

For this study, we define a semi-local ring in terms of maximal ideals. A
commutative ring R that has finitely many number of maximal ideals is called
a semi-local ring. Any element of the semi-local ring R that does not belong
to any one of the maximal ideals is a unit. If R has exactly one maximal ideal,
then R is said to be a local ring. Although, by definition, a local ring is also
a semi-local ring, we restrict our discussion of semi-local rings in this study to
rings having more than one maximal ideals. In this study, we introduce new
definitions.

Definition 1. Let R be a semi-local ring with maximal ideals I1 and I2. Then,
R is said to be balanced if the following hold:
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a.) |I1| = |I2|;
b.) If x ∈ Ii, then there exists y ∈ Ij, i �= j such that xy = 0.

Otherwise, we call R an uneven semi-local ring. In addition, zero divisors
x and y that satisfy condition b.) are said to be incongruent.

Two ideals I and I′ of R are coprime if I + I′ = R. A set of nonzero
ideals {I1, I2, . . . , In} in a ring R is pairwise coprime if Ij + Ik = R for all
j, k = 1, 2, . . . , n, (j �= k).

We now state the Chinese Remainder Theorem (CRT) for rings which is a
generalization of the Chinese Remainder Theorem from the elementary number
theory.

Theorem 1. (Hungerford,[10]) (Chinese Remainder Theorem) Let A1, . . . , An

be pairwise coprime ideals in a ring R. If b1, . . . , bn ∈ R, then there exists b ∈ R
such that

b ≡ bi(modAi) (i = 1, 2, . . . , n).

Furthermore b is uniquely determined up to congruence modulo the ideal

A1 ∩A2 ∩ . . . ∩An.

Corollary 1. (Hungerford,[10]) If A1, . . . , An are pairwise coprime ideals in
a ring R, then, as rings,

R/(A1 ∩ . . . ∩An) ∼= R/A1 × R/A2 × . . .× R/An.

Since every proper nontrivial ideal in a semi-local ring is maximal, by the
CRT, every semi-local ring is isomorphic to a direct product of residue fields.

2.3 Frobenius rings and homogeneous weight

Let T be the multiplicative group of unit complex numbers which is also a one-
dimensional torus. A character of R (considered as an additive abelian group)
is a group homomorphism χ : R → T. The set of all characters R̂, called the
character module of R, is a right (resp. left) R-module whose group operation
is pointwise multiplication of characters and scalar multiplication is given by
χr(x) = χ(rx) (resp. rχ(x) = χ(xr)). If the mapping φ : R → R̂ given by
φ(r) = χr (resp. φ(r) =r χ) is an isomorphism of right (resp. left) R- modules,
then a character χ of R is called a right (resp. left) generating character. It is
known that for finite rings, a character χ of R is a right generating character if
and only if it is a left generating character. In addition, a character χ of R is
a right (resp. left) generating character if kerχ does not contain any nonzero
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right (resp. left) ideal of R [14]. The ring R is Frobenius if and only if R̂ ∼= R
as right or left R- modules. Further, from [14], a finite ring is Frobenius if and
only if it has a generating character.

We equip a ring R with a weight function w. If x = (x1, x2, . . . , xn) ∈ Rn,

then w(x) =
n∑

i=1

w(xi). In addition, the distance d(x, y) between two vectors

x, y ∈ Rn is defined as d(x, y) = w(x− y).

A weight w on a finite ring R is called a homogeneous weight if it satisfies
the following conditions:

(1) For all x, y ∈ R, Rx = Ry implies w (x) = w (y) holds.

(2) Every nonzero ideal Rx of R has the same average weight, that is, there
exists a nonzero real number Γ such that

∑
y∈Rx

w(y) = Γ · |Rx| for all x ∈ R/{0}

The number Γ is the average value of w on R. As an example, the Hamming

weight on Fpr is a homogeneous weight with Γ =
pr − 1
pr

.

From [9], if R is Frobenius with generating character χ, then every homo-
geneous weight w on R is of the form:

w : R −→ R, w (x) = Γ

[
1 − 1

|R×|
∑

u∈R×
χ (xu)

]
,

where R× is the group of units of R.

2.4 Linear block codes over rings

A rate-k/n linear block code over R generated by a k × n matrix G over the
ring R is the R-submodule given by the set B = {v ∈ Rn | v = uG, u ∈ Rk}. If
no proper subset of the rows of G generates B, then the matrix G is called a
generator matrix for B. If the columns of G contain the columns of the k × k
identity matrix Ik, then G is said to be systematic. A code B is systematic if
it has a systematic generator matrix. If the first k columns of G is Ik, then
G is in standard form. In addition, the code B is called free if the rows of G
are linearly independent. Two codes are said to be equivalent if one can be
obtained from the other by permuting the coordinates. Codes that differ only
by a permutation of coordinates are called permutation- equivalent.
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From [6], any linear code over a finite ring R has a generator matrix which
can be put in the following form:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1Ik1 A1,2 A1,3 A1,4 . . . . . . A1,s+1

0 a2Ik2 a2A2,3 a2A2,4 . . . . . . a2A2,s+1

0 0 a3Ik3 a3A3,4 . . . . . . a3A3,s+1

...
... 0

. . . . . .
...

...
...

...
. . . . . .

...
0 0 0 . . . 0 asIks asAs,s+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where Ai,j are matrices over R for i = 1 and binary matrices for i > 1 and
[a1], [a2], . . . , [as] denote the non-zero equivalence classes under the relation
a ∼ b if a = bu where u is a unit in R. A code of this form is said to be of type

{k1, k2, k3, . . . , ks} and has
s∏

i=1

|aiR|ki elements, where aiR = {x|x = air, r ∈
R}.

Suppose B is a block code over R. Then, the minimum weight of B is

min{w(x) | x ∈ B, x �= 0}.
The distance d(x, y) between codewords x and y is d(x, y) = w(x−y). Further,
the minimum distance d of B is

min{d(x, y) | x, y ∈ B, x �= y}.
It is known that if B is linear, then d is always equal to the minimum weight
of B.

3 Results

3.1 The cross product Fpr × Fpr

The cross product F2
pr is a commutative ring with identity. Its additive iden-

tity is (0, 0) and its multiplicative identity is (1, 1).

We state another theorem from [10] that we will use to determine the of
ideals of F2

pr .

Theorem 2. (Hungerford,[10]) If R1, . . . , Rn are rings with identity and I an

ideal in
n∏

j=1

Rj, then I =
n∏

j=1

Aj where Aj is an ideal in Rj.



84 Bounds on the pr-ary Image of Linear Block Codes over ...

Using Theorem 2, it is easy to verify that the ideals of F2
pr are the following:

i. F2
pr = ((x, y)), x, y �= 0

ii. {0} × Fpr = ((0, y)), y �= 0

iii. Fpr × {0} = ((x, 0)), x �= 0

iv. {(0, 0)} = ((0, 0))

Since every nonzero element x of the field Fpr is a generator, then each of
the ideals ((0, x)) and ((x, 0)) has pr elements. These two ideals are both
maximal which makes F2

pr a finite balanced semi-local ring. Hence, the nonzero
elements of the maximal ideals are the zero divisors of F2

pr which are the nonzero
multiples of (0, x) and (x, 0). Consequently, there are 2(pr − 1) zero divisors of
F2

pr .

Moreover, since Fpr is a field, then every nonzero element x of Fpr has
a multiplicative inverse say x′. Hence, if (x, y) ∈ F2

pr such that x, y �= 0,
then there exists (x′, y′) ∈ F2

pk such that (x, y)(x′, y′) = (1, 1). Thus, every
(x, y) ∈ F2

pr such that x, y �= 0 is a unit and |(F2
pr )×| = (pr − 1)2.

From [14], the finite direct sum of Frobenius rings is Frobenius and if the
Frobenius rings R1, . . . , Rn each have right generating characters χ1, . . . , χn,
then R = ⊕Ri has generating character χ =

∏
χi. Hence, the generating

character of F2
pr is given by

χ : F2
pr → T, χ((x, y)) = e

2πi
p tr(x+y). (3)

Thus, the cross product F2
pr is a finite balanced semi-local Frobenius ring.

3.2 Structural Properties of Fpr + vFpr

The structure of Rp = Fpr + vFpr , p prime, k ∈ N, will be studied by taking
two cases: when p = 2 with v2 = v; and when p is an odd prime with v2 = 1.
It can be shown that the case when p = 2 with v2 = 1 yields the finite chain
ring F2r + uF2r , u2 = 0 and the case when p is odd with v2 = v is isomorphic
to the ring produced when p is odd with v2 = 1. We chose the latter case in
this study since the motivation is to generalize F3 + vF3 wherein the condition
v2 = 1 is imposed in most of the available literatures instead of v2 = v.
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3.2.1 The ring F2r + vF2r , v2 = v

Although it can be shown by using CRT that R2r = F2r + vF2r , v2 = v is
isomorphic to F2

2r , we can also use the ring isomorphism given by

φ : R2r → F2
2r

a + bv 
→ (a+ b, a).

Based on the ideals of F2
pr , we can also construct the lattice of ideals of R2r

given by Figure 1.

F2r + vF2r

� �

(v) (1 + v)
� �

(0)

Figure 1: Lattice of Ideals of F2r + vF2r , v2 = v

The two proper nontrivial ideals (v) and (1 + v) are both maximal which
makes R2r a finite balanced semi-local ring with |(v)| = |(1 + v)| = 2r. Using
the isomorphism, we can say that a nonzero element of R2r is a zero divisor if
and only if it is an R2r- multiple of v or 1 + v and there are 2(2r − 1) of them.
Indeed, the zero divisors are contained in the two maximal ideals. It is easy to
show that an R2r- multiple of v or 1+v is simply an F2r -multiple of v or 1+v.
Thus, we can write (v) = {xv|x ∈ F2r} and (1 + v) = {x(1 + v)|x ∈ F2r}.Since
R2r is a semi-local ring, then its nonzero element is a unit if and only if it is
not an F2r - multiple of v or 1 + v and there are (2r − 1)2 units. Further, a
nonzero element of R2r is either a unit or a zero divisor.

In addition, R2r is Frobenius as shown in the next theorem.

Theorem 3. Let r ∈ N. The ring F2r + vF2r , v2 = v is a finite balanced
semi-local Frobenius ring.

Proof We are left to show that R2r is Frobenius. The mapping

χ : R2r → T, χ(x+ vy) = e(πi)tr(y)

is a character. Now,

kerχ = {a+ bv ∈ R2r |(−1)tr(y) = 1}
= {a+ bv|tr(b) = 0}.



86 Bounds on the pr-ary Image of Linear Block Codes over ...

Note that there are 2r−1 elements of F2r whose trace is 0. Hence, | kerχ| =
2r−1. However, each nonzero proper ideal of R2r has order 2r > 2r−1. Thus,
it is impossible for kerχ to contain a nonzero proper ideal of R2r . �

3.2.2 The ring Fpr + vFpr , v2 = 1, p �= 2

For the succeeding discussions in this subsection, we let p be an odd prime
and v2 = 1. We also denote by −1 the additive inverse of 1 in Fp. Note that
for any value of p, the element −1 always exists.

Using the CRT, we can show that Rpr = Fpr + vFpr ∼= F2
pr . However, we

can also show the same thing using the isomorphism

φ : Rpr → F2
pr

a+ bv 
→ (a− b, a+ b).

The lattice of ideals of Rpr is given by Figure 2.

Fpr + vFpr

� �

(1 + v) (1 − v)
� �

(0)

Figure 2: Lattice of Ideals of Fpr + vFpr , v2 = 1, p �= 2

We can see that Rpr has exactly two maximal ideals namely (1 + v) and
(1 − v) making it a balanced semi-local ring with |(1 + v)| = |(1 − v)| = pr. A
nonzero element of Rpr is a zero divisor if and only if it is an Rpr - multiple of
1 + v or 1− v and there are 2(pr − 1) of them. It is easy to show that an Rpr -
multiple of 1 + v or 1− v is simply an Fpr -multiple of 1 + v or 1− v. Thus, we
can write (1 + v) = {x(1 + v)|x ∈ Fpr} and (1− v) = {x(1− v)|x ∈ Fpr}. Since
Rpr is a semi-local ring, then its nonzero element is a unit if and only if it is
not an Fpr - multiple of 1 + v or 1− v and there are (pr − 1)2 of them. Further,
a nonzero element of Rpr is either a unit or a zero divisor. In addition, Rpr is
Frobenius as shown in the next theorem.

Theorem 4. The ring Fpr + vFpr , v2 = 1 is a finite balanced semi-local Frobe-
nius ring.



John Mark Lampos and Virgilio Sison 87

Proof The proof is almost the same as the proof of Theorem 3. The mapping

χ : Rpr → T, χ(x+ vy) = e
2πi

p tr(y).

is a generating character of Rpr . �

We can also describe a zero divisor based on the ideal that contains it as
suggested by the next theorem.

Theorem 5. Let Rp = Fpr + vFpr where v2 = v or 1 and p is prime. If
a ∈ (1 + v) and b �= 0 such that ab = 0, then b ∈ (v) if p = 2 and b ∈ (1 − v) if
p is odd. In addition, no such b exists in (1 + v).

Proof Suppose p = 2. Then the proper nontrivial ideals of R2 are (v) and
(1 + v). If a = q · 1 + v ∈ (1 + v) for some q ∈ F2r , q �= 0, then for c ∈ (v),
ac = 0 since 1+v ·1+v = 0. Let b = t ·1+v ∈ (1+v), t ∈ F2r , t �= 0. If ab = 0,
then q · 1 + v · t · 1 + v = qt · 1 + v = 0 implying q = 0 or t = 0, a contradiction.
Hence, no such b ∈ (1 + v) exists.

The proof is similar for the case p �= 2 by using the fact that the proper
ideals when p �= 2 are (1 − v) and (1 + v) and that (1 − v)(1 + v) = 0. �

3.3 Weight functions on Fpr + vFpr

In this section, we discuss the weight functions that can be defined on Rp

such as the so- called Bachoc and homogeneous weights.

3.3.1 Bachoc weight on Fp + vFp

Since we have shown that Fp +vFp is isomorphic to F2
p, then following [1], the

Bachoc weight on F2 + vF2 , v
2 = v denoted by wB is given by

wB(x) =

⎧⎪⎨
⎪⎩

0 if x = 0
1 if x = 1
2 if x = v, 1 + v

In addition, if p is an odd prime and v2 = 1, then the Bachoc weight on
Fp + vFp is given by

wB(x) =

⎧⎪⎨
⎪⎩

0 if x = 0
p if x is a nonzero multiple of 1 + v or 1 − v

1 otherwise
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3.3.2 Homogeneous weight on Fpr + vFpr

We now construct a homogeneous weight on Rp in terms of the generating
character of F2

pr . It can be shown that using the Fundamental Theorem of Sum
Calculus,

p−1∑
j=1

e(
2πj

p )i = −1.

The generating character of F2
pr is given by (3). Let S = F2

pr . Based on
[9], the homogeneous weight of (x, y) ∈ S is given by

wHom((x, y)) = Γ

⎡
⎣1 − 1

(pr − 1)2
∑

(a,b)∈S×
e

2πi
p tr(ax+by)

⎤
⎦ .

Case 1: Suppose (x, y) = (0, 0). Since tr(0) = 0, then wHom((0, 0)) = 0.

Case 2: Suppose (x, y) is a zero divisor. Without loss of generality, suppose y =
0, x �= 0 and let F∗

pr = Fpr\{0}. Thus, tr(ax + by) = tr(ax), (a, b) ∈ S×.
Note that |S×| = (pr − 1)2. Let qi ∈ F∗

pr , i = 1, . . . , pr − 1. Hence,
{qix|i = 1, . . . , pr − 1} = F∗

pr . Thus, there would be pr − 1 copies of
(qix, 0) for each x coming from the pr − 1 elements of S× whose first
component is qi. Since tr takes on each value of Fp equally often, that
is, pr−1 times, and tr((0, 0)) = 0, then it follows that the number of
α ∈ F∗

pr such that tr(α) = 0 would be pr−1 − 1. In addition, for each
j = 1, . . . , p − 1, the number of β ∈ F∗

pr such that tr(β) = j is pr−1.
Then, we have

∑
(a,b)∈S×

e
2πi

p tr(ax)= (pr−1 − 1)(pr − 1)(e
2πi

p )0 + (pr−1)(pr − 1)
∑p−1

j=1 e
( 2πji

p )

= (pr−1 − 1)(pr − 1)(1) + (pr−1)(pr − 1)(−1)
= −(pr − 1).

Thus, if (x, y) is a zero divisor, then

wHom((x, y)) = Γ
[
1 − 1

(pr − 1)2
.− (pr − 1)

]
= Γ

(
pr

pr − 1

)
.

Case 3: Suppose (x, y) is a unit. Since S× forms a group under multiplication,
then given an element (x, y) ∈ S×, {(qix, siy)|(qi, si) ∈ S×} = S×. Let
j,m ∈ Fp\{0} and consider the following disjoint subsets of S×.
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A0,0 = {(x, y)|tr(x) = tr(y) = 0}
Aj,0 = {(x, y)|tr(x) = j, tr(y) = 0}
A0,m = {(x, y)|tr(x) = 0, tr(y) = m}
Aj,m = {(x, y)|tr(x) = j, tr(y) = m}

Since in F∗
pr , there are pr−1−1 elements whose trace is 0 and pr−1 elements

whose trace is j for each j = 1, . . . , p−1, then we have |A0,0| = (pr−1−1)2,
|Aj,0| = |A0,m| = (pr−1 − 1)pr−1, and |Aj,m| = (pr−1)2 for each j,m.
Then, given (x, y) ∈ S×,

∑
(a,b)∈S×

e
2πi

p tr(ax+by)= |A0,0|e 2πi
p (0) +

p−1∑
j=1

|Aj,0|e 2πi
p (j) +

p−1∑
m=1

|A0,m|e 2πi
p (m)

+
p−1∑
j=1

p−1∑
m=1

|Aj,m|e 2πi
p (j+m)

= (pr−1 − 1)2 + 2(pr−1 − 1)pr−1

p−1∑
j=1

e
2πi

p (j)

+(pr−1)2
p−1∑
j=1

e
2πi

p (j)
p−1∑
m=1

e
2πi

p (m)

= (pr−1 − 1)2 + 2(pr−1 − 1)pr−1(−1) + (pr−1)2(−1)(−1)
= 1.

Thus, if (x, y) is a unit, then wHom((x, y)) = Γ
(

1 − 1
(pr − 1)2

)
=

Γ
[
(pr)(pr − 2)
(pr − 1)2

]

Then, we have the next theorem.

Theorem 6. The normalized homogeneous weight on F2r + vF2r , v2 = v is
given by

wHom(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x = 0
2r

2r − 1
if x is a nonzero multiple of v or 1 + v

(2r)(2r − 2)
(2r − 1)2

otherwise.

(4)

Moreover, the normalized homogeneous weight on Fpr + vFpr , v2 = 1, p �= 2 is
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given by

wHom(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x = 0
pr

pr − 1
if x is a nonzero multiple of 1 − v or 1 + v

(pr)(pr − 2)
(pr − 1)2

otherwise.

(5)

Note that the normalized homogeneous weight on F2 + vF2 does satisfy the
positive definite property of weight functions as suggested by the factor (2r−2)
in (4). In addition, using (5) with Γ = 4

3 , we can show that the Lee weight on
F3 + vF3 , v

2 = 1 is homogeneous on F3 + vF3 .

3.4 Linear Block Codes over Fpr + vFpr

Following the matrix in (2), we have the following generator matrix for a
linear block code over Rp.

Theorem 7. Any linear block code B over R2r has a generator matrix which
can be put in the following form:⎛

⎝ Ik1 A C D
0 vIk2 vE vF
0 0 (1 + v)Ik3 (1 + v)H

⎞
⎠ (6)

where A,C, and D are matrices over R2r and E, F, and H are binary matrices.

Moreover, any linear block code B over Rpr has a generator matrix which
can be put in the following form:⎛

⎝ Ik1 A C D
0 (1 + v)Ik2 (1 + v)E (1 + v)F
0 0 (1 − v)Ik3 (1 − v)H

⎞
⎠ (7)

where A,C, and D are matrices over Rpr and E, F, and H are binary matrices.

In both cases, B is type {k1, k2, k3} and |B| = (p2r)k1 · (pr)k2 · (pr)k3 .

Proof Using the equivalence relation defined in (2), we have the equivalence
classes [1], [v], and [1 + v] for R2r , and [1], [1 + v], and [1 − v] for Rpr . Hence
we have the matrices. The cardinality of B is computed using the cardinalities
of the ideals (1), (v), (1 + v), and (1 − v). �

If k2 = k3 = 0, then we say that the code B is free.

We can characterize the minimum-weight codewords of B based on its
coordinates as shown in the next theorem and proposition.
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Theorem 8. If dH is the minimum Hamming distance of B, then there is a
codeword c ∈ B with wH(c) = dH such that all nonzero coordinates of c are
contained in a proper ideal.

Proof Let a′ ∈ B with wH(a′) = dH whose nonzero coordinates are not con-
tained in a single proper ideal. Since B is linear, then a = (1+v)a′ ∈ B and the
coordinates of a are all contained in the ideal (1+v). Since 1+v is a zero divi-
sor, then some of the nonzero coordinates of a′ that belongs to the other proper
ideal, will now be zero after multiplying 1 + v. Thus, wH(a) ≤ wH(a′) = dH .
Since dH is the smallest among all Hamming distances in B, then wH(a) = dH .
The same technique is used in proving the cases of the ideals (v) and (1 − v).
�

Proposition 1. Let x ∈ B such that wH(x) = dH. Then x is one of the
following codewords:

i.) Type A: the nonzero components of x are units;

ii.) Type B: the component of x are contained in (v) if p = 2 or in (1 − v) if
p is an odd prime; and

iii.) Type C: the components of x are contained in (1 + v).

Proof We will only prove the statement when p = 2 since the proof is similar
when p is an odd prime. Suppose x contains units and zero divisors. Without
loss of generality, let x = (0, u, z1) where u is a unit and z1 is a zero divisor.
Suppose z1 ∈ (v). By Theorem 5, there exists a zero divisor z2 ∈ (1 + v) such
that z2x = (0, z2u, 0). Since B is linear, then z2x ∈ B. Thus, wH(z2x) < wH(x)
and hence, x is not a minimum weight word. The same is true when the
components of x are zero divisors from two distinct ideals of Rp. Hence, we are
left to show the existence of Types A, B, and C codewords. The existence of
Type B and C codewords is already ensured by Theorem 8. Since the sum of
two divisors coming from two different ideals is a unit, then a Type A codeword
exists by adding a Type B and a Type C codewords. �

We now derive a bound on the minimum Bachoc distance dB and minimum
normalized homogeneous distance dHom of B in terms of dH .

Theorem 9. Let B be a linear block code over Fp+vFp . Then dH ≤ dB ≤ pdH.

Proof If a Type A codeword exists, then dB = dH since the Bachoc weight
of a unit is 1. If a Type A codeword does not exist, then dB will always be
greater than dH . By Theorem 8, there always exists a Type B or C codeword,
say x. Then, wB(x) = pdH since the Bachoc weight of a zero divisor is p. �
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Theorem 10. If dHom is the minimum normalized homogeneous distance of
B, then

dHom ≤ pr

pr − 1
dH .

Proof From Theorem 8, there exists a codeword x ∈ B such that wHam(x) =
dH and the components of x are all contained in a single proper ideal. Thus,
the dH nonzero coordinates of x are zero divisors. Note that if y ∈ Rp is a zero

divisor, then wHom(y) =
pr

pr − 1
. Since the homogeneous weight of a unit is

always less than 1, then the result follows. �

We remark that if every minimum Hamming weight word has components
contained in a single proper ideal, then dHom = pr

pr−1
dH .

We now consider a subcode generated by a codeword whose idea came
from [13].

Definition 2. Let R be a ring. Then, the subcode of B generated by the
codeword x ∈ B, denoted by Bx, is the set {ax|a ∈ R}.

We present a characterization of the subcode Bx in terms of its order and
the components of the generator codeword.

Theorem 11. Let x ∈ B, x �= 0. |Bx| = p2r if and only if Bx is free. Moreover,
|Bx| = pr if and only if Bx is not free.

Proof

Case 1: Suppose x contains a unit u. Without loss of generality, suppose x =
(0, u, . . . , 0). Hence, Bx = {(0, r, . . . , 0)|r ∈ Rp} since (u) = Rp. Thus,
|Bx| = p2k.

Case 2: Suppose x does not contain a unit and the nonzero components of x
belong the maximal ideals (z1) and (z2), z1 �= z2. Without loss of gener-
ality, let x = (0, z1, z2, . . . , 0). Hence, Bx = {(0, az1, az2, . . . , 0)|a ∈ Rp}.
Since (z1) ∩ (z2) = {0}, then there does not exist distinct a, b ∈ Rp,
such that az1 = bz1 and az2 = bz2 for if there exist such a, b, then
az1 − bz1 = (a − b)z1 = 0 and az2 − bz2 = (a − b)z2 = 0 implying
a− b ∈ (z1)∩ (z2) by Theorem 5, a contradiction. Hence, there are pr.pr

possible combinations for (z1, z2). Thus, |Bx| = p2r.

Case 3: Suppose x does not contain a unit and the nonzero components of x
belong to the maximal ideal (z1). Without loss of generality, suppose
x = (0, z1, . . . , zpr−1), zi ∈ (z1). Hence, Bx = {(0, az1, . . . , azpr−1)|a ∈
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Rp}. Since zi ∈ (z1), then there exists ai ∈ Rp such that aiz1 = zi for all
i = 1, . . . , pr−1. Thus, if az1 = bz1, b ∈ Rp, then it follows that azi = bzi

for i = 2, . . . , pr − 1. Since |(z1)| = pr, then there will only be pr distinct
az1 and consequently, |Bx| = pr .

Note that in Cases 1 and 2, we can show that {x} is a basis of Bx over Rp

while there is no basis for Case 3. �

Corollary 2. The subcode Bx is not free if and only if the nonzero components
of x belong to a proper ideal of Rp. Moreover, |Bx| = pr if and only if the
nonzero components of x are not contained in a proper ideal of Rp.

3.5 The pr- ary image of linear block codes over Fpr +vFpr

Let B2 = {v1, v2} be a basis of Rp over Fpr and w = av1 + bv2 ∈ Rp where
a, b ∈ Fpr . Define the mapping

ψ : Rp → F2
pr , av1 + bv2 
→ (a, b). (8)

Then, ψ is a module homomorphism over Fpr and is injective.

Let B be a linear block code of length n over Rp. We now extend ψ to Rn
p

coordinatewise. If c = (c1, c2, . . . , cn) ∈ B and ci = aiv1 + biv2, then ψ(c) =
(a1, b1, a2, b2, . . . , an, bn) ∈ F2n

pr . We will refer to the set ψ(B) = {ψ(c)| c ∈ B}
as the pr-ary image of B under the mapping ψ with respect to the basis B2.
Since ψ is injective, then we have |B| = |ψ(B)|.
Theorem 12. If B is a linear block code over Rp of length n, then ψ(B) is a
linear block code over Fpr with length 2n. In particular, if B is free whose rank
is k, then ψ(B) has rank 2k.

Proof Let x = (x1, x2, . . . , xn) ∈ B. Since each ψ(xi), 1 ≤ i ≤ n, has length 2,
then ψ(B) has length 2n. Using the fact that ψ is an Fpr -module homomor-
phism, we can show that ψ(B) is an Fpr - subspace of F2n

pr .

Suppose B is free and of rank k, then a basis for B has k elements, say
x1, x2, . . . , xk. Hence, if y ∈ B, then

y = (a1 + b1v)x1 + (a2 + b2v)x2 + . . .+ (ak + bkv)xk, ai + biv ∈ Rp

and

ψ(y) = a1ψ(x1) + b1ψ(vx1) + a2ψ(x2) + b2ψ(vx2) + . . .+ akψ(xk) + bkψ(vxk).
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Thus, the set

S = {ψ(x1), . . . , ψ(xk), ψ(vx1), . . . , ψ(vxk)}

spans ψ(B).

Since the xi’s are linearly independent and ψ(x) = 0 if and only if x = 0,
then

ψ

(
k∑

i=1

(ai + biv)xi

)
= 0 if and only if ai = bi = 0, 1 ≤ i ≤ k

implying

k∑
i=1

aiψ(xi) +
k∑

i=1

biψ(vxi) = 0 if and only if ai = bi = 0, 1 ≤ i ≤ k.

Hence, S is a basis for ψ(B) with 2k elements. �

Corollary 3. Let B be a free linear block code over Rp generated by the matrix
G. Then, a generator matrix of ψ(B) is

G[ψ(B)] =
(
ψ(G)
ψ(vG)

)

4 Bounds on the pr-ary image

In this section, we derive bounds on the minimum Hamming distance δ of the
pr-ary image of a linear block code B over Rp. We begin with the simplest
bound, the Singleton-type bound.

Theorem 13. (Singleton-type Bound) Let B be a free rate-k/n linear block
code over Rp. Then δ satisfies

δ ≤ 2n− 2k + 1 (9)

Proof If B is a free rate-k/n code, then ψ(B) is a rate-2n/2k linear binary
block code by Theorem 12. Applying the Singleton bound for codes over fields,
then we have the bound. �

We now restate the Plotkin bound from [8].
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Proposition 2. (Greferath and O’Sullivan, [8]) Let R be a finite Frobenius
ring that is equipped with a homogeneous weight w with average value Γ. Let
B be a (not necessarily linear) block code of length n over R with minimum
w-distance δmin. Then

δmin ≤ |B|
|B| − 1

Γn. (10)

A direct application of (10) to ψ(B) gives the following Plotkin-type
bound.

Theorem 14. (Plotkin-type bound) Let B be a rate-k/n systematic linear block
code over Rp. Then,

δ ≤ (p2rk)
(p2rk − 1)

· p
r − 1
pr

· 2n. (11)

Proof The length of ψ(B) is 2n with Γ = pk−1
pk . Since B is systematic, then

|B| = |ψ(B)| = (p2r)k and the rest follows from Proposition 2. �

The minimum Hamming weight can also be used to bound the minimum
Hamming weight of the image code as given by the following bound which
resembles the bound in [12].

Theorem 15. (Rains-type bound) Let dH be the minimum Hamming distance
of B. Then,

(pr − 1)dH

pr
≤ δ ≤ 2dH . (12)

Proof Since Γ is the minimum nonzero value of homogeneous weight, that is,
the Hamming weight wH on Fpr , then (pr−1)dH

pr ≤ δ since Γ = pr−1
pr on Fpr .

Note that δ is bounded above by 2n and for all x ∈ B, we have δ ≤ wH(ψ(x)).
Thus, if x ∈ B and wH(x) = dH , then δ ≤ 2dH . �

Following the proof of the generalized Rabizzoni bound in [13], we can
refine the upper bound and the lower bound of (12) as shown in the following
Rabizzoni-type bound.

Proposition 3. (Rabizzoni-type Bound) Let dH be the minimum Hamming
distance of B and Bx be the subcode generated by the codeword x with Hamming
weight dH. Then

dH ≤ δ ≤
⌊ |Bx|
|Bx| − 1

· p
r − 1
pr

· 2dH

⌋
. (13)

Moreover, if Bx is free, then

dH ≤ δ ≤
⌊

2prdH

pr + 1

⌋
. (14)
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Otherwise,
dH ≤ δ ≤ 2dH . (15)

Proof Since for any x ∈ B, wH(x) ≤ wH(ψ(x)), then dH ≤ δ. Note that the
minimum Hamming distance of Bx is still dH since Bx is a subcode of B. Let
ψ(Bx) denote the image of Bx under ψ. Hence, ψ(Bx) is also a subcode of
ψ(B). Since the length of ψ(B) is twice the length of B, then the effective
length of ψ(Bx) is 2dH coming from the dH nonzero positions in x. Let δx and
δ be the minimum Hamming distance of ψ(Bx) and ψ(B) respectively. Also,
note that |ψ(Bx)| = |(Bx)| and Γ = pr−1

pr on Fpr . Applying (10) on δx, we have

δx ≤
( |Bx|
|Bx| − 1

)
·
(
pr − 1
pr

)
· 2dH.

Since δ ≤ δx, then we have the bound (13). The bounds (14) and (15) were
obtained by applying Theorem 11 to |Bx|. �

It is apparent that the sharpness of (13) depends on the choice of x. Se-
lecting a codeword x that produces a free subcode will always give a sharper
bound as suggested by (14) and (15).

5 Examples

For the following examples, we consider the mapping ψ with respect to the
basis {1, v}.

Example 1. The rate-2/3 linear block code B over F2 + vF2 with generator
matrix

G =
(

1 1 0
0 1 + v 1 + v

)

has minimum Hamming distance d = 2. Its image ψ(B) is a rate-3/6 linear
block code over F2 generated by⎛

⎝ 1 0 0 1 1 1
0 1 0 1 0 0
0 0 1 1 1 1

⎞
⎠

with minimum Hamming distance δ = 2 and |B| = |ψ(B)| = 8. Since x =
(1 1 0) ∈ B, then we can obtain a free subcode. Using the Rabizzoni-type
bound, we have 2 ≤ δ ≤ 2 implying δ = 2.
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Example 2. The rate-2/6 linear block code B over F2 + vF2 with systematic
generator matrix

G =
(

1 0 v v v 1 + v
0 1 0 1 1 1

)

has minimum Hamming distance d = 2. Its image ψ(B) is a rate-4/12 linear
block code over F2 generated by⎛

⎜⎜⎝
1 0 0 0 0 1 0 1 0 1 1 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1 0 1

⎞
⎟⎟⎠

with minimum Hamming distance δ = 4 and |B| = |ψ(B)| = 16. There is
no minimum weight codeword x ∈ B that will yield a free subcode. Using
the Rabizzoni-type bound, we have 2 ≤ δ ≤ 4. The image code reached the
upperbound of the Rabizzoni-type bound.

Example 3. The rate-2/6 linear block code B over F2 + vF2 with generator
matrix

G =
(

1 1 1 1 1 1
0 0 0 1 + v 1 + v 1 + v

)

has minimum Hamming distance d = 3. Then, ψ(B) is a rate-3/12 binary
linear block code generated by⎛

⎝ 1 0 1 0 1 0 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1

⎞
⎠

with minimum Hamming distance δ = 6 and |B| = |ψ(B)| = 8. There
is no minimum weight codeword x ∈ B that will yield a free subcode. Using
the Plotkin bound for binary codes, we have δ ≤ 6. Using the Rabizzoni-type
bound, we have 2 ≤ δ ≤ 6. Hence, the binary code is Plotkin-optimal and
Rabizzoni-optimal.

The upper bounds on the previous examples are summarized in Table 1. It
can be noticed that the Rabizzoni-type bound gives the sharpest upper bound
among the other.

Example 4. The rate-2/4 systematic linear block code B over F3 +vF3 , v
2 = 1

with generator matrix (
1 0 v 1 + 2v
0 1 2 + 2v 2v

)
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Table 1: Bounds on δ for Codes over F2 + vF2

Code k n |B| dH δ Rabizzoni Rains Plotkin Singleton
Example 1 2 3 8 2 2 2 4 3 4
Example 2 2 6 16 2 4 4 4 6 9
Example 3 2 6 8 3 6 6 6 6 10

has dH = 2. The, ψ(B) is a rate-4/8 ternary linear block code generated by⎛
⎜⎜⎝

1 0 0 0 0 1 1 2
0 1 0 0 1 0 2 1
0 0 1 0 2 2 0 2
0 0 0 1 2 2 2 0

⎞
⎟⎟⎠

with minimum Hamming distance δ = 4 and |B| = |ψ(B)| = 81.

There is no minimum weight word in B that produces a free subcode.
Hence, using the Rabizzoni-type bound, we have 2 ≤ δ ≤ 4. Thus, the ternary
code is Rabizzoni-optimal.

Example 5. The rate-2/4 linear block code B over F3 + vF3 , v
2 = 1 with

generator matrix (
1 + 2v 2 + v 2 + v 0

0 2 + 2v 1 + v 2 + 2v

)
has dH = 3. Its image ψ(B) is a rate-2/8 ternary linear block code generated
by ⎛

⎜⎜⎝
1 0 0 0 0 1 1 2
0 1 0 0 1 0 2 1
0 0 1 0 2 2 0 2
0 0 0 1 2 2 2 0

⎞
⎟⎟⎠

with minimum Hamming distance δ = 6 and |B| = |ψ(B)| = 9.

There is no minimum weight word in B that produces a free subcode.
Hence, using the Rabizzoni-type bound, we have 3 ≤ δ ≤ 6. In addition, using
the Plotkin bound for ternary codes, we obtain δ ≤ 6. Thus, the ternary code
is Rabizzoni-optimal and Plotkin-optimal.

Example 6. The rate-2/6 linear block code B over F3 + vF3 , v
2 = 1 with

generator matrix(
1 + v v 1 + v v 1 + v v
1 + 2v 2 + v 1 + 2v 2 + v 1 + 2v 2 + v

)
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has dH = 3. The image ψ(B) is a rate-3/12 ternary linear block code generated
by ⎛

⎝ 1 0 0 2 1 0 0 2 1 0 0 2
0 1 0 2 0 1 0 2 0 1 0 2
0 0 1 2 0 0 1 2 0 0 1 2

⎞
⎠

with minimum Hamming distance δ = 6 and |B| = |ψ(B)| = 27.

There is no minimum weight word in B that produces a free subcode.
Hence, using the Rabizzoni-type bound, we have 3 ≤ δ ≤ 6. Thus, the ternary
code is Rabizzoni-optimal.

The upper bounds on the previous examples are summarized in Table 2.
Again, we can see that the Rabizzoni-type bound gives the sharpest upper
bound among the other.

Table 2: Bounds on δ for Codes over F3 + vF3

Code k n |B| dH δ Rabizzoni Rains Plotkin Singleton
Example 4 2 4 81 2 4 4 4 5 5
Example 5 2 4 9 3 6 6 6 6 7
Example 6 2 6 27 3 6 6 6 8 10
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