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Abstract

There are many sport tournaments nowadays. One type of sport
traveling tournament could be considered a traveling tournament prob-
lem (TTP) or double round robin since each team has to plays against
another team twice: one home game and one opponents home game. If
there are n teams and each team is required to plays against every other
team in the first n — 1 games, this is called a half traveling tournament
problem (HTTP). If the HTTP also requires that the last n—1 games are
ordered exactly like the first n — 1 games with reversed venues, then it is
called a mirrored traveling tournament problem (MTTP). This research
aims to study about how to schedule the sport tournament with mini-
mum total number of traveling of all teams in case of five and six teams.
The proofs and examples of tournaments with minimum total number of
traveling are presented. The result shows that the minimum total num-
ber of all team traveling for five team sport tournament is 26 and for six
team sport tournament is 38. Both tournaments are considered MTTP.

1 Introduction

Currently many sports have organized the tournaments all over the world.
Some sports have their own league such as soccer, american football, basket-

Key words: Sport Tournament, Traveling Tournament Problem, Mirrored Traveling Tour-
nament Problem, Half Traveling Tournament Problem, Minimum total number of traveling.
The author would like to thank Human Resource Development in Science Project (Science
Achievement Scholarship of Thailand, SAST) for financial support. This research is a part
of Ph.D.Sc. thesis at department of mathematics, Faculty of Science at KMUTT.

171



172 Sport Tournaments with Minimum Number of...

ball, etc. However, each sport league may have different type of tournament.
In a sport tournament, each playing team has to find sponsors to support many
costs such as advertisement, traveling, contracts of players, and accommoda-
tion. The traveling costs depend on number of traveling, distance of traveling,
and transportation. In this research, the objective is to study about sport tour-
nament with minimum total number of traveling. The traveling of each team
is a class of traveling tournament problem. Each team has to play against
each other teams twice: home game and away game. It can be represented by
some notions in graph theory as shown in section 2. Moreover, some important
theorems were used in the next section as shown below.

Definition 1.1. [4] Traveling Tournament Problem (TTP) is a considered
a double round robin (DRR). A scheduling to a double round robin (DRR)
tournament, played by n teams, where n is a even number, consisting in a
schedule where each team plays with each other twice, one game in its home
and other in your opponent’s home.

Definition 1.2. [7] Half Traveling tournament Problem (HTTP) is a general-
ization of TTP. The main defference is the concept of half double round robin
(HDRR). A HDRR is a tournament where each team plays every other once in
the first n — 1 rounds.

Definition 1.3. [6] Mirrored Traveling Tournament Problem (MTTP) pro-
posed by Ribeiro and Urrutia, is a generalization of TTP that represents the
common structure in Latin America tournaments (e.g. Brazilian Soccer Cham-
pionship). The main defference is the concept of mirrored double round robin
(MDRR). A MDRR is a tournament where each team plays every other once
in the n — 1, followed by the same games with reversed venues in the last n — 1
rounds. It is also a type of HTTP.

2 Problem Description

The number of traveling of each team is the total number of traveling starting
from its home city and return there after the end of tournament. For the case
of five team tournament, a free team (dummy team) is added. When a team
has game against free team, it means no game on that week and it is called a
free week. Each team has exactly two free weeks in the tournament. Any team
stay at its home city during its free week. In addition, each team would not go
back to its home city after away game if it did not have a home game in the
week afterward.

3 Notations and Observations

3.1 Notations The five team tournament can be represented by a complete
graph in five vertices. Five teams can be represented by letters A, B, C, D and
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E. Each line represents two games between two corresponding teams. The
number of teams is an odd number so a free team represented by letter F' is
added.

Then, we describe the TTP by constructing a new graph G’ for each team.
The graph G’ represents all possible traveling of team A as follow,

AB AC AD AE AF
o o—»0 [e] o

Figure 1: One possible traveling for team A

For each team X, the games between X and Y will be represented by the two
vertices: XY and Y X. The vertex XY represents the game between X and Y
at home X. The arrow A — DA of graph G, represents the game between A
and D at home D on the first week. The arrow A — DA — BA represents the
second week, team A has a game with team B at home B. For example, one
possible traveling sequence is

A— DA — BA— EA— AF — AC - AD - AB — AE — FA — CA — A. (1)

After we obtain the traveling sequence of team A, we can find the traveling of

team B and are given some edges from traveling sequence(1). There are only

8 empty spots left (...). B— ... > BA—...—»...—>...—>...—> AB —
. — ... — B s a path which is gotten by traveling sequence of team A.

BA BC BD BE BF

@ —»0, o<«—o0 o
B @ ﬁv

e—»0 Oo<+«—o0 o

AB CB DB EB FB

Figure 2: One possible traveling for team B

Next, the traveling sequence of team B could be

B—BF—-BA—BC—FEB—DB—FB—AB—-CB— BE—BD—B. (2

After we get the traveling sequences of team A and B, we can find the traveling
of team C and are given some edges from traveling sequences(1)and (2). There
are only 6 empty spotsleft. C — ... — ... > BC — ... AC —...— ... —
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] CB cp CE CF
/ [+ o] o] o—> 0
‘ . W
(<] ] [e] oO—» 0
AC BC DC EC FC

Figure 3: One possible traveling for team C

CB — ...— CA — (C is a path which is gotten by traveling sequences of team

A and B.
Next, the traveling sequence of team C' could be

¢ —-CE—-CF—-BC—-CD—AC —-EC—FC—-CB—-DC—-CA—C. (3)

After we get the traveling sequences (1), (2)and (3), we can find the traveling
of team D by filling in the only 6 empty spots left. It is a sequence

D—DA—FED— DF —-CD— DB — AD — DE —- FD — DC — BD — D. (4)

Figure 4: One possible traveling for team D

After we get the traveling sequences (1), (2), (3) and (4). The traveling
sequence of team FE is fixed even though there are 4 empty spots left. It is a
sequence

EFE—-CE—FED—FEFA—FEB—FF—-EC—DE—AFE —-BE—FE—E. (5)

°o—>o ° o °
£ .\

e—>o ¢ o °

AE BE CE DE FE

Figure 5: One possible traveling for team E
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Table 1: An Example of a Scheduling

WEEK TOURNAMENT TRAVELING TO
FREE TEAM TEAM TEAM TEAM TEAM

# GAME 1 GAME II TEAM A B C D E
. (DO,A (CCEy B D B € D C
. (BA (ED C B B C E E
s (B,A) (BC) D E B B D E
. (EB)y (CLD) A A E C C E
s (AC) (D,B) E A D A D E
s« (AD) (BE,C) B A B E A E
. (AB) (D,Efy C A A C D D
<« (AE) (B D A C C D A
« (BE (D,C)y A A B D D B
w (C,A (BD E C B C B E
" A B C D E

Number of traveling 6 6 7 8 6

From all traveling sequences, one can make a scheduling of all five teams in
eleven weeks (last week for traveling back home) as shown in Table 1.

Note (X,Y) means a game between X and Y at home X. This is also an
MTTP. Then, the total number of traveling of all teams is 33.

4 Known Results

Theorem 4.1. [7] There are 384 possibilities of scheduling for four team Mir-
rored Traveling Tournament Problem with additional condition: a game between
T; and T at T;’s home cannot be followed by the game between T; and T; at
T;’s home.

Theorem 4.2. [7] For four team tournament, the minimum number of trav-
eling of each team is 4.

Lemma 4.3. [7] The minimum number of traveling occurs when a team has
all away games consecutively.

Theorem 4.4. [7] For four team tournament, not all team could attain a
minimum number of traveling.

Lemma 4.5. [7] For four team tournament, Mirrored Traveling Tournament
Problem cannot be made with each team traveling 5 times.
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5 Main Results

5.1 Five Team Tournament

Theorem 5.1. For five team tournament, the minimum number of traveling
of each team is 5.

Proof From Lemma 4.3, a team has four away games and all away games
consecutively. So, there are four traveling for four away games and plus one
for going back home. Therefore, the minimum of traveling is 5. U

Theorem 5.2. For five team tournament, not all team could attain a minimum
number of traveling.

Proof There are seven possibilities of minimum number of traveling as shown
in Table 2. The first week of all choices has only one away game. If we pick any
five choices for five teams from these seven possibilities, we cannot schedule the
tournament because there must be 3 home teams and 2 away teams each week.

Table 2: All possible minimum traveling for each team

WEEK # 1 2 3 4 5 6 7 8 9 10
CASE #
1 Away Away Away Away Home Home Home Home Home Home
2 Home Away Away Away Away Home Home Home Home Home
3 Home Home Away Away Away Away Home Home Home Home
4 Home Home Home Away Away Away Away Home Home Home
5 Home Home Home Home Away Away Away Away Home Home
6 Home Home Home Home Home Away Away Away Away Home
7 Home Home Home Home Home Home Away Away Away Away
U

However, there exists a possible scheduling for five teams which attains a
minimum total number of traveling. One example is shown in Table 3.
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Table 3: Schedule of five team tournament with minimum number of traveling

WEEK TOURNAMENT TRAVELING TO
FREE TEAM TEAM TEAM TEAM TEAM

# GAMEI GAMET A B C D E
1 (D,C) (E,B) A A E D D E
2 (A,B) (E,C) D A A E D E
3 (A,C) (E,D) B A B A E E
4 (A,D) (B,C) E A B B A E
5 (A,E) (B,D) C A B C B A
6 (C,D) (B,E) A A B C C B
7 (B,A) (C,E) D B B C D C
8 (C,A) (D,E) B C B C D D
9 (D,A) (C,B) E D C C D E
10 (E,A) (D,B) C E D C D E
11 A B C D E

Number of traveling 5 6 5 5 5

Then, the total number of traveling of all team is 26. It is a Mirrored Traveling
Tournament Problem (MTTP).

Proposition 5.3. For five team tournament, Mirrored Traveling Tournament
Problem can be made with each team traveling 6 times.

Proof Each team has four away games and traveling 6 times. So, not all away
games are consecutive. Then we separate all away games into two parts. They
are 2&2 away games, 1&3 away games and 3&1 away games.

Let A be a set of all mirrored traveling which each team travels 6 times. Then
|A] = [A@2,2)] + |Aq,3)] + |A(s,1)], where A ;y is a set of i away games for the
first part and j away games for the second part.

HQHCQ, |A(272)| = 9, |A(173)| =9 and |A(371)| =9.

Thus, |A| = |A(272)| =+ |A(173)| =+ |A(371)| = 27

It means that we have (257) possibilities, but not all cases make a possible
schedule. O

However, there exists a possible scheduling for five teams such that each
team travels exactly 6 times as shown in Table 4.
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Table 4: Schedule of five team tournament with each team traveling 6 times

WEEK TOURNAMENT TRAVELING TO
FREE TEAM TEAM TEAM TEAM TEAM

# GAMEI GAMET A B C D E
1 (C,D) (E,B) A A E C C E
2 (A,B) (E,D) C A A C E E
3 (A,E) (C,B) D A C C D A
4 (D,A) (C,E) B D B C D C
5 (C,A) (D,B) E C D C D E
6 (D,C) (B,E) A A B D D B
7 (B,A) (D,E) C B B C D D
8 (E,A) (B,C) D E B B D E
9 (A,D) (E,C) B A B E A E
10 (A,C) (B,D) E A B A B E
11 A B C D E

Number of traveling 6 6 6 6 6

Since each team travels exactly 6 times, the total number of traveling of all
teams is 30. It is also a Mirrored Traveling Tournament Problem (MTTP).

5.2 Six Team Tournament

We now consider a case of six team sport tournament. There are the fol-
lowing results. In this part, we would like to show only results because most
theorems are similar to theorems of five team tournament. For six team tour-
nament, not all teams could attain a minimum number of traveling. However,
there exists a possible scheduling for six teams which attain a minimum total
number of traveling.

One example is shown in Table 5 and 6. The total number of traveling of
all team is 38. It is also a Mirrored Traveling Tournament Problem(MTTP).

Proposition 5.4. For six team tournament, Mirrored Traveling Tournament
Problem cannot be made with each team traveling 7 times.

Proof Each team has five away games and traveling 7 times. So, not all away
games are consecutive. Then we separate all away games into two parts. They
are 1&4 away games, 2&3 away games, 3&2 away games and 4&1 away games.
Let A be a set of all mirrored traveling which each team travels 7 times. Then
|A] = [Aq,a)| +[A@3)| +1As,2) A1), where Ay jy is a set of i away games
for the first part and j away games for the second part.

Since we consider only MTTP, each set must have all five consecutive home
games in between two parts of away games. Hence, [A1 4)| = 1, [A(2,3)| = 1,
A2y = 1 and [Auy| = 1. Thus, [A] = [Aqg] + [Aes)| + [Ae2)) +
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Table 5: Schedule of six team tournament with minimum number of traveling

WEEK TOURNAMENT
# GAME I GAME II GAME III
1 (B,A) (E,C) (F,D)
2 (E,A) (F,C) (B,D)
3 (F,A) (D,C) (E,B)
4 (C,A) (F,B) (D,E)
5 (D,A) (C,B) (F,E)
6 (A,B) (C,E) (D,F)
7 (AE) (C,F) (D,B)
8 (A,F) (D,C) (B,E)
9 (A,C) (B,F) (E,D)
10 (A,D) (C,B) (E,F)
|A@,1)] = 4. It means that we have only 4 possibilities, but there are six

teams. Therefore, the tournament for six teams cannot be made with each

team traveling 7 times.

O

Table 6: Traveling of six team tournament with minimum number of traveling

WEEK TRAVELING TO
# TEAM A TEAM B TEAM C TEAM D TEAM E  TEAM F
1 B B E F E F
2 E B F B E F
3 F E D D E F
4 C F C D D F
5 D C C D F F
6 A A C D C D
7 A D C D A C
8 A B C C B A
9 A B A E E B
10 A B B A E E
11 A B C D E F

NUMBER OF

o

TRAVELING

o

=1

1

o

o

6 Conclusion

We can always schedule the sport tournaments with minimum total number
of traveling for five and six teams. The minimum total number of all team
traveling for five team sport tournament is 26 and for six team sport tournament
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is 38. Both tournaments are considered MTTP. Moreover, scheduling for five
team MTTP can be made fair to every team by setting equal minimum number
of traveling of each team.

References

(1]

[2

(3]
(4]

(5]

(6]

(7]

(8]

[9]

Ahmed, A. H., 2010, Genetic Algorithm for the Traveling Salesman Problem using Se-
quential Constructive Crossover Operator, International Journal of Biometrics & Bioin-
formatics, Volume 3, Issue 6 (2010), 96 — 105.

Biajoli, F. L. and Lorena, L. A. N., Mirrored Traveling Tournament Problem: An Evolu-
tionary Approach, Advances in Artificial Intelligence - IBERAMIA- SBIA 2006 Lecture
Notes in Computer Science, Volume 4140 (2006), 208 — 217.

Chartrand, G., Zhang, P., Introduction to Graph Theory, McGraw-Hill Companies, 2005.
Easton, K., Nemhauser, G., Trick, M., The Traveling Tournament Problem Description

and Benchmarks , Seventh International Conference on the Principles and Practice of
Constraint Programming, (2001), 580 — 589.

Falkenauer, E., Genetic Algorithms and Grouping Problems, John Wiley & Sons Inc.,
New York, 1998.

Ribeiro, C.C., Urrutia S., Heuristics for the Mirrored Traveling Tournament Problem,
Fifth International Conference on the Practice and Theory of Automated Timetabling,
Patat2004, Pittsburgh, USA, (2004), 323-342.

Rutjanisarakul, T., Jiarasuksakun, T., Four Team Sport Tournament with Minimum
Number of Traveling, International Conference on Applied Statistics (ICAS 201/), Khon
Kaen, Thailand, (2014), 73 — 78.

Vasudev, C., Graph Theory with Application, New Age International (P) Ltd., Delhi,
2006.

West, D., Introduction to Graph Theory, 2nd edition, Prentice Hall, 2001.



