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Abstract

In air pollution studies at metropolis, as in Bangkok or Saigon, in-
stallation of new stations for monitoring dangerous pollution sources is
costly. Using statistical models and analyzing data sets collected at good
stations to predict air pollution levels at malfunctioning stations, therefore,
are highly demanding. We study air pollution prediction by geo-statistical
methods with a realistic dataset costly observed in Ho Chi Minh City. Geo-
statistics includes statistical methods for modeling of spatially continuous
phenomena, using data measured at a finite number of locations to build
up right models, to estimate and predict values of interest (such as air or
water pollutant levels in a geographical region, oil volumes of reservoirs
under the ocean bed...) at unmeasured locations. To analyze our multi-
variate data (of SO2, PM-10 and benzen, where the last two are popular
air pollution causes at metropolis) recorded in HCMC since 2003, we start
from determining suitable co-kriging models for pollutants to predicting
these pollutant concentrations at some un-measured stations in the city.

The paper’s key contributions include, firstly, formulating co-kriging
models and computing theirs optimal unbiased estimators for air pollu-
tion prediction using the valuable observed data with two pollutants; sec-
ondly, proposing a computational mechanism (progressively co-kriging im-
putation) to deal with missing data at unmeasured monitoring sites.
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spatial-temporal data analysis, stationary random process
(2010) Mathematics Subject Classification: 62H11, 62F30, 60G10, 60G60

111



112 Analyzing Incomplete Spatial Data In Air Pollution Prediction

1 Introduction

Environmental pollution, and air pollution in particular, have become critical
concerns from both social and scientific views in the globe, and critically serious
in developing countries like Vietnam, Thailand, China or India. Specifically, air
pollution in metropolitan areas - caused mostly by construction, transportation
and industrial manufacturing - increasingly degrades environment quality, and
leads to severe problems for health of dwellers as well.

1.1 Mathematics and Geostatistics for air pollution studies

The use of mathematical models to study air pollution has started since 1859 by
Robert A. Smith in calculating the distribution of CO2 concentration in Manch-
ester City under Gaussian models (Smith [11]). The most popular model,
the ISCST3 (Industrial Source Complex Short Term) model is a Gaussian dis-
persion model used to assess the impact of single sources in the United State’s
industry. The AERMOD model of the US’s EPA (briefed of AERMIC-AMS/EPA
Regulatory Model Improvement Committee- Model) is used in placement for
the ISC3 Model to study pollution at complex terrains. More precisely, having
initially being focused on the regulatory models that are designed for estimat-
ing near-field impacts from a variety of industrial source types, see [15].

Key statistical methods which are popularly employed in these models form
a specific class of statistical science, named geostatistics. The methods of
geo-statistics provide quantitative descriptions of natural variables distributed
in space or in time and space. Examples of such variables are ore grades in a
mineral deposit, concentrations of pollutants in a contaminated site etc. Invest-
ment or management decisions are based on studies involving many disciplines
besides geostatistics, but they illustrate the notion of spatial uncertainty and
how it affects development decisions.

The modern approach of geostatistics deals with the inherent uncertainty
of spatial data in a stochastic way; more precisely is to treat the variable of
interest as a random variable, or better spatial random variable. This implies
that at each point in space, x ∈ R3 there is a series of values for a property,
Z(x), and the one observed, z(x), is drawn at random according to some law,
from some probability distribution. Statistics come into play because proba-
bility distributions are the meaningful way to represent the range of possible
values of a parameter of interest. In addition, a statistical model is well-suited
to the apparent randomness of spatial variations. The prefix “geo” emphasizes
the spatial aspect of the problem. Geostatistics, due to Jean-Paul and al. (Jean
Paul [6]) briefly includes a few types of problems, ranging from

a) Structural analysis, in Section 2.2, with the key tool of variogram, sta-
tistically describes how the values at two points become different as the
separation between them increases;
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b) Survey optimization, to answer questions related to sampling patterns
which ensure the best precision; to

c) Spatial interpolation, to estimate the values of a regionalized variable at
places where it has not been measured.

Spatial data analysis (SDA) is the task of reducing spatial patterns of ge-
ologic variability to a few clear and useful summaries, (Dung [14]). As a
major part of SDA, spatial interpolation methods include a group of different
approaches, among which computational geometry-based methods have been
employed a great deal in many environmental sectors, not only for modeling
and predicting air pollutants. First of all, polygon methods (as nearest neighbor,
triangulation method...) have advantages such as easy to use, quick calcula-
tion in 2D; but also possesses many disadvantages as discontinuous estimates,
edge effects/sensitive to boundaries, and difficult to realize in 3D. Secondly,
the inverse distance method allows some flexibility for adapting to different es-
timation problems. This method can handle anisotropy;1 but its weaknesses
include difficulties encountered when points to estimate coincide with data
points (d = 0, weight is undefined), susceptible to clustering. Environmental-
ists, especially petroleum geologists, also use polynomial-based methods like
splines or trend surfaces, see [13, Chapter 3] for more info.

1.2 Study area and its environmental problems

The study area is Ho Chi Minh City metropolis (HCMC) in South Vietnam,
shown in Figure 1. With an approximated area of 2096 km2, and around 10
million people. the city has a tropical climate, specifically a tropical wet and
dry climate, with an average humidity of 78 − 82%, and average temperature
of 280C (or 820F ).

Air pollution sources are diverse in HCMC. Consequently, the city has se-
riously faced environmental pollution, mostly caused by the rapid population
growth, the slowly upgraded infrastructure, and last but least, its backward
management mechanism. In HCMC metropolis, main sources of pollution in-
clude not only rubbish and the above mentioned relevant issues, but also daily
dweller’s traffic and construction, of which, air pollution caused by traffic activ-
ities highly accounts for about 70%, due to 2010 data of Vietnamese Ministry
of Transport [10]. The main means of transportation within the city are buses,
cars, taxis, motorbikes, and bicycles. The growing number of cars tends to
cause gridlock and severely contributes to air pollution.

We study air pollution prediction by geo-statistical methods with a realistic
dataset observed at air monitoring stations scattering in and around HCMC.
The building of air quality monitoring stations is essential, but also difficult

1this term is applied both to a random function and to it’s variogram when the values of the
variogram depend on both the distance and the direction
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because of expensive installation costs, no good information of selected areas
for installation in order to achieve precise results.

Figure 1: Location of the study area
([16])

Figure 2: Air quality monitoring sites
in HCMC

According to the Center for Monitoring and Analyzing Environment (HCMC
Department of Resources and Environment), the city’s network of air qual-
ity monitoring (Figure 2) had 9 automatic observing stations and 6 semi-
automatic (i.e. combining manpower and equipment in sampling and analysis)
monitoring stations from 2003.

Having played a key role in continuously updating of data of environmental
monitoring system in HCMC, these stations were built thanking to financial
supports of the Danish and Norwegian governments around 2000. However,
this system had been severely degraded, no longer usable since 2009. Costly
installation and difficult preservation of stations in humid tropical weather in
Vietnam lead to a highly demand in using statistical methods and models to
analyze data sets already collected at good stations, then predict air pollution
level at some malfunctioning stations, or any place in the city.

1.3 Realistic dataset collected in HCMC metropolis

Figure 2 shows the geographical locations of air monitoring stations, in which
the Universal Transverse Mercator (UTM) coordinate system is used. Data ob-
tained from nine automatic monitoring stations, including 4 roadside stations
and 5 residential area stations. Daily measurements (24/24 hours) cover at
least parameters PM10, SO2, NO2, CO,O3, TSP ... (measured in µg/m3).
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Table 1: Air pollution data

Station X(m) Y(m) PM10 benzen

Thong Nhat- TN 680690 1193530 65.99 31
Binh Chanh- BC 674500 1183000 17.48 29
Zoo 686420 1193370 73.14 31
Doste 684430 1192220 123.50 34
Hong Bang- HB 681620 1189460 NA NA
District 2- D2 691160 1193510 73.31 39
Quang Trung- QT 677940 1200080 NA NA
Thu Duc- TD 693640 1199790 NA NA
Tan Son Hoa- TSH 682830 1193930 67.33 33

The contribution of particulate matter concentration (as PM10- particulate
matter with an aerodynamic diameter of at most 10 µm) to air pollution and
the effects of high levels of these pollutants to human health have been docu-
mented extensively in the literature. Exposure to high concentrations of PM, to
a large extent, has been associated with increased rates of morbidity and mor-
tality, caused primarily by cardiovascular, respiratory diseases (Anderson [3]).

Table 2: Air pollution PM-10 data in January - March, 2003

Date TN BC ZOO DOSTE TSH D2 TD QT HB

1/1/2003 1:00 404 5.73 87 91.9 149.2 95 NA NA NA

1/1/2003 2:00 188 3.82 66 165.7 129.1 100 NA NA NA

1/1/2003 3:00 91 1.91 54 149.3 61.1 71 NA NA NA

1/1/2003 4:00 73 5.73 45 100.6 4.4 63 NA NA NA

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
4/30/2003 19:00 42 21.01 51 83.1 45.1 47 NA NA NA

4/30/2003 20:00 67 9.55 46 48.5 49.2 57 NA NA NA

3/31/2003 21:00 57 13.37 32 149.3 69.7 59 NA NA NA

3/31/2003 22:00 47 13.37 33 68.4 4.4 66 NA NA NA

3/31/2003 23:00 50 13.37 23 140.7 69.7 50 NA NA NA

We only use PM10 pollution data measured at 9 stations in 3 months of
January - March, 2003 and benzen as secondary parameter. Their average
values in 3 months, 2013 are listed in Table 1, and a portion (January - March,
2003) of full realistic data set is shown in Table 2, where NA is not available.

Table 3 summarizes the statistics. The data were transformed to common
logarithms (loge) to stabilize the variance in order to better normalize the vari-
ate’s distribution prior to geostatistical analysis.
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Table 3: Summary statistics of PM10 and benzen

PM10/µgm−3 loge(PM10) benzen/µgm−3 loge(benzen)
Number of data 6 6 6 6
Minimum 17.48 2.86 29 3.37
Maximum 123.50 4.82 39 3.66
Mean 70.125 4.111 32.833 3.487
Std deviation 33.659 0.655 3.488 0.103
Variance 1132.906 0.4284 12.167 0.01055
Skewness 0.04 -1.24 0.86 0.72

Research motivations

Our study is motivated by, firstly the cost-benefit analysis in sustainable ur-
ban management, the public health concern, and lastly, the statistical- compu-
tational interest. HCMC is the fastest developing city in Vietnam with a lot
of problems in urban management, as deciding which geographic locations
should be planned for industry (‘gray’ or ‘high-tech’), for building up new in-
frastructure or creating green living condition for dwellers throughout the time
scale. Our study may provide hints to the city’s administration when consid-
ering trade-offs between sustainable developing and environmentally friendly
inhabiting, perhaps by firstly exploiting knowledge extracted from valuable
air/groundwater pollution datasets collected with expensive budget? The last
motivation of the work is purely statistical, how can we rightly analyze the
monitored data sets if so many monitoring sites are malfunctioning?

The paper’s contributions and structure

The paper’s contributions include, firstly formulating co-kriging models and
computing their optimal estimators for the cases of two and three pollutants
of air pollution with observed multivariate datasets; and secondly presenting a
brief temporal analysis of the pollution process during 2003-2004 in HCMC.

The paper is structured in six parts and an appendix. We first recall back-
ground of spatial random processes in Section 2, the kriging method in Section
3. In Section 4 we employ the cokriging method, a key approach of geostatis-
tics, to predict pollutant values. We then propose a computational mechanism
- (progressively co-kriging imputation) - to deal with incomplete or missing data
matter at malfunctioning monitoring sites in Section 5, finally conclusion and
new looks follow in Section 6.
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2 Background

2.1 Stationarity of spatial random processes

We are going to use geostatistical structures (as variograms) to predict key at
most three major fatal pollutants of air pollution, say PM10, benzen and SO2

concentrations at unobserved areas surrounding the observed stations, located
in a spatial region D covering HCMC metropolis.

In general let Z(x) = {z(x) : x ∈ D ⊂ Rn} be spatial random function (or
random process), being used as a model for (or a collection of) the regionalized
variables

{z(x) : x ∈ D ⊂ Rn}

representing geological or environmental reality. For simplicity we make no
notational distinction between the (uppercase) parent random function Z(x)
and its particular (lowercase) realization or random variable z(x). Denote by
S the set of points where Z(x) has been sampled. In most cases, S is finite and
consists of n data points, denoted and called as locations or sampling places
s1, s2, . . . , sn.

For each spatial random variable z, however, we have only a single realiza-
tion. Consequently, we cannot compute statistics for the realization or draw
inferences from this spatial random process (obtained by measuring the ran-
dom variable z at many places in spaces). To overcome this troublesome we
must assume that the spatial process is stationary. Being stationary means its
spatial statistics or laws are invariant under translation in Rn.

To be precise, a spatial random process satisfies second-order stationary if
i) E[Z(s)] exists and does not depend on s, and furthermore
ii) E[Z(s)− Z(s + h)] = 0, the expected differences are zero.

Definition 1 (Covariance of a spatial random process).

We represent the process by the model

Z(s) = µ+ ε(s), (2.1)

where µ = E[Z] is the process mean and ε(s) is a random quantity with a mean
of zero and a covariance, C(h) = Cov[Z(s), Z(s + h)], given by

C(h) = E[(Z(s)− µ)(Z(s + h)− µ)] = E[ε(s) ε(s + h)]. (2.2)

In these equations the lag h is the separation between samples in both
distance and direction; Z(s) and Z(s + h) are the values of Z at places s and
s + h, and E denotes the expectation. Under the second-order stationarity,
we replace the covariance C(h) by half the variance of the differences, the
semivariance:

γ(h) =
1

2
E
[
{Z(s)− Z(s + h)}2

]
. (2.3)



118 Analyzing Incomplete Spatial Data In Air Pollution Prediction

2.2 Variograms

Therefore, under the second-order stationary conditions (Webster [13]), one
obtains E[Z(s)] = µ and the covariance C(h), given by:

C(h) = E[(Z(s)− µ)(Z(s + h)− µ)] = E[Z(s)Z(s + h)− µ2]. (2.4)

Then Var[Z(s)] = C(0) = E[Z(s) − µ]2, and for second-order stationary
processes the covariance function (2.4) and the semivariance function

γ(h) =
1

2
E
[
{Z(s)− Z(s + h)}2

]
= C(0)− C(h), (2.5)

are equivalent, where C(0) = V[Z] is the variance of the random process.

Definition 2 (The variograms).

• This semivariance γ(h) given in (2.5) is said to be the theoretic vari-
ogram, depending on h and only on h. This variogram expresses the spa-
tial correlation between neighboring observations, expressible in terms of
the (auto)covariance function.

• With observed data we practically use the sample variogram γ(h) (Oliver
[7]), being one estimated from data z(si), i = 1, 2, . . ., defined as one-
half of the variance of the difference between the attribute values at all
points separated by a distance h, given by

γ(h) =
1

2N(h)

N(h)∑
i=1

{
z(si)− z(si + h)

}2
(2.6)

where N(h) is the total number of pairs of attributes that are separated
by a lag h. We also call γ(h) the experimental variogram.

We next recall key concepts and results of kriging method, which is helpful
for the subsequent developing story.

3 The classic kriging method

Kriging technique employs an exact interpolation estimator, aimed to find the
best linear unbiased estimate (BLUE, having a minimum variance of the error
of estimation), named kriging variance or estimator. We start with ordinary
kriging (OK, for spatial data following an intrinsically stationary process) for
the subsequent spatial and temporal analysis. OK method is mainly applied
for datasets without a trend of the unknown mean for medium size areas, in
which assuming constant unknown mean a0 = E[x] when predicting Z(s) at
unsampled places is still reasonable. If the study area is considerably large, we
can employ the universal kriging (UK, see [6] for more), assuming a trend in
the mean over the spatial region D in our prediction.
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3.1 Kriging estimator

Kriging in the simplest case is a problem of point estimation. Select any place
s0 ∈ D, our sampling space of interest. We want to estimate Z0 = Z(s0) from
n observations Z(si) using the general affine (kriging) estimator, given by the
following equation

Z∗ = Ẑ(s0) =

n∑
i=1

wi Z(si) + λ0 (3.1)

where Z∗ = Ẑ(s0) is the kriged (estimated) value at place s0, Z(si) is the
observed value at place si, wi ≥ 0 is the non-negative weight associated with
that observation, and λ0 is said to be uncertainty (nuisance, uncontrollable)
constant from the global environment. The constant λ0 and wi are selected so
as to minimize the expected mean square error (mse) E[(Z∗ − Z0)2].

In the stationary case, the variance of a linear combination
n∑

i=1

wi Z(si) can

be expressed via the variograms by

V

[ n∑
i=1

wi Z(si)

]
= −

n∑
i=1

n∑
j=1

wiwjγ(sj − si). (3.2)

Look back to the affine estimator Z∗ given in Equation (3.1), its mse can be
written as

E[(Z∗ − Z0)2] = V[Z∗ − Z0] + Bias(Z∗)2 (3.3)

where

Bias(Z∗) = E[Z∗ − Z0] = λ0 +

(∑
i

wi − 1

)
a0.

To achieve unbiased estimations in OK, in which Bias(Z∗) = 0, for whatever
the unknown mean a0 is, we have to set λ0 = 0, additionally require the convex

condition
n∑

i=1

wi = 1. Then, geometrically s0 is in the convex hull CH(S) of

S, given as

CH(S) =

{
x ∈ Rn : x =

∑
i

wi si, where
∑
i

wi = 1, wi ≥ 0, si ∈ S
}
.

(3.4)

3.2 Unbiased ordinary kriging estimator

Our problem can now be reformulated as follows: Find n weights wi summing
to 1 and minimizing

V[Z∗ − Z0] =
∑
i

∑
j

wiwj σij − 2

n∑
i=1

wiσi0 + σ00, (3.5)



120 Analyzing Incomplete Spatial Data In Air Pollution Prediction

where σij = γ(si, sj). This is solved by the method of Lagrange multipliers,
with η the Lagrange multiplier; employing the function

Q = V[Z∗ − Z0] + 2η

( n∑
i=1

wi − 1

)

from which we solve the system
∂Q

∂w1
= · · · =

∂Q

∂wn
=
∂Q

∂η
= 0 to get the OK

variance

σ2
OK = E[(Z∗ − Z0)2] = σ00 −

n∑
i=1

wiσi0 − η.

Its variance can be calculated with the variograms, by Equation 3.2 and
with σij := γ(si, sj) we get the following system of kriging equations:

n∑
j=1

wjγ(si, sj)− η = γ(si, s0), i = 1, . . . , n;

n∑
i=1

wi = 1, wi ≥ 0,
(3.6)

where γ(si, s0) is the value of the variogram between the ith sampling data
point si and the target point s0, and γ(si, sj) is the value of variogram between
the points si and sj . The kriging variance for unbiased OK is

σ2
OK =

n∑
i=1

wiγ(si, s0)− η.

The linear system (3.6) has a unique solution if and only if the covariance
matrix Σ = [σij ] is strictly positive definite, which is the case if we use a strictly
positive definite covariance function model and if all data points are distinct
(Jean Paul [6, Chapter 3]).

4 Cokriging approach

4.1 Co-kriging predictor and the MSE of prediction

Since our spatial-temporal air pollution data is multivariate by nature, see Sec-
tion 1.3, we might use multiple parameters to exploit their relationships. We
can estimate certain parameters, and use relevant information of other param-
eters, employ ingredients recalled in Appendix A. Cokriging is an extension of
ordinary kriging, [of a single variable given in Eqn. (3.1)], in which it takes
into account additional correlated information in the subsidiary variables.
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In cokriging technique, suppose that at each spatial location si we observe
k > 1 variables Zj , summarized in a data matrix M :

Z1(s1) Z1(s2) · · ·Z1(si) · · ·Z1(sn),

· · · · · · · · ·
Zj(s1) Zj(s2) · · ·Zj(si) · · ·Zj(sn),

· · · · · · · · ·
Zk(s1) Zk(s2) · · ·Zk(si) · · ·Zk(sn),

(4.1)

for j = 1, 2, · · · , k, and i = 1, 2, · · · , n.

We want to predict Z1(s0), the value of variable Z1 at unobserved location
s0 ∈ CH(S). Given the fact that the variable under consideration (the target
variable Z1) occurs with other variables (called co-located variables), we explore
the possibility of improving the prediction of variable Z1 by taking into account
the correlation of Z1 with the other variables.

Definition 3 (The cokriging predictor).

The cokriging predictor takes the form

Ẑ1(s0) =

k∑
j=1

n∑
i=1

wjiZj(si) = w11 Z1(s1) + · · ·+ w1n Z1(sn) + · · ·

+ wk1 Zk(s1) + · · ·+ wkn Zk(sn)

(4.2)

We see that there are weights associated with variable Z1 but also with each
one of the other variables. For instance, to our observed multivariate data, with
chemical factors of PM10, SO2, NO2, CO,O3, TSP and benzen we could set
max k = 7. Assume that the whole sampling area is rather homogeneous, i.e.
distinct sampling points si have different values Zj(si) but their expectation
are the same, we denote µj = E[Zj(si)] = E[Zj(s)], for each j = 1, · · · , k; for
all i = 1, · · · , n, and for any sampling point s ∈ D.

We will examine ordinary co-kriging (the extension of ordinary kriging of a
single variable to two or more variables). The expectation vector of k variables
Zj then is

E[Z(s)] =


E[Z1(s)]
E[Z2(s)]

...
E[Zk(s)]

 =


µ1

µ2

...
µk

 = µ
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We want the predictor Ẑ1(s0) to be unbiased, that is E[Ẑ1(s0)] = µ1, where

E[Ẑ1(s0)] =

k∑
j=1

n∑
i=1

wjiE[Zj(si)] =

n∑
i=1

w1i µ1 + · · ·+
n∑

i=1

wki µk

= w11E[Z1(s1)] + · · ·+ w1nE[Z1(sn)] + · · ·
+ wk1E[Zk(s1)] + · · ·+ wknE[Zk(sn)].

(4.3)

Definition 4. The mean squared error (MSE) of prediction of Z1 is given by

E
[
{Z1(s0)− Ẑ1(s0)}2

]
= σ2

e . (4.4)

Therefore, to get E[Ẑ1(s0)] = µ1 we must have the followings

n∑
i=1

w1i = 1,

n∑
i=1

w2i = 0, · · · ,
n∑

i=1

wki = 0 (4.5)

As with the other forms of kriging, co-kriging minimizes the MSE, with
certain conditions:

min σ2
e = E

[
{Z1(s0)− Ẑ1(s0)}2

]
= E

[
{Z1(s0)−

k∑
j=1

n∑
i=1

wjiZj(si)}2
]
,

subject to
n∑

i=1

w1i = 1,
n∑

i=1

w2i = 0, · · · ,
n∑

i=1

wki = 0

4.2 Co-kriging: the case of two pollutants

Let’s assume k = 2, in other words, we observe variables Z1 and Z2 (e.g. PM10

and benzen in our sample data) and we want to predict Z = Z1.

Lemma 4.1. The variance σ2
e = E

[
{Z1(s0)− Ẑ1(s0)}2

]
has explicit expansion

σ2
e = E[{Z(s0)− µ1}2]− 2

n∑
i=1

w1iE[Z1(s0)− µ1][Z1(si)− µ1]

− 2

n∑
i=1

w2iE[Z1(s0)− µ1][Z2(si)− µ2]

+

n∑
i=1

n∑
j=1

w1iw1jE[Z1(si)− µ1][Z1(sj)− µ1]

+

n∑
i=1

n∑
j=1

w2iw2jE[Z2(si)− µ2][Z2(sj)− µ2]

+ 2

n∑
i=1

n∑
j=1

w1iw2jE[Z1(si)− µ1][Z2(sj)− µ2]

(4.6)
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Proof. From the constraints (4.5), we have 0 =
n∑

i=1

w2i =
n∑

i=1

w2iµ2. We rewrite

σ2
e = E

[
{Z(s0)−

n∑
i=1

w1iZ1(si)−
n∑

i=1

w2iZ2(si)}2
]
.

Let’s add the quantity of (−µ1 + µ1 +
n∑

i=1

w2i µ2) into the variance, where

µ1 = E[Ẑ1(s0)] and µ2 = E[Z2(s)], we see that

σ2
e = E

[
{Z(s0)−

n∑
i=1

w1iZ1(si)−
n∑

i=1

w2iZ2(si)− µ1 + µ1 +
n∑

i=1

w2iµ2}2
]

= E
[
{(Z(s0)− µ1)−

n∑
i=1

w1i[Z1(si)− µ1]−
n∑

i=1

w2i[Z2(si)− µ2]}2
]

Expanding the core term of the expectation above we get:

[Z(s0)− µ1]2 − 2

n∑
i=1

w1i[Z1(s0)− µ1][Z1(si)− µ1]− 2

n∑
i=1

w2i[Z1(s0)− µ1][Z2(si)− µ2]

+
n∑

i=1

n∑
j=1

w1iw1j [Z1(si)− µ1][Z1(sj)− µ1] +
n∑

i=1

n∑
j=1

w2iw2j [Z2(si)− µ2][Z2(sj)− µ2]

+ 2

( n∑
i=1

w1i[Z1(si)− µ1]
)( n∑

i=1

w2i[Z2(si)− µ2]
)

(4.7)

where the last term is reduced to 2
n∑

i=1

n∑
j=1

w1iw2j [Z1(si)−µ1] [Z2(sj)−µ2].

2

We next consider the following optimization model

min σ2
e = E

[
{Z(s0)−

n∑
i=1

w1iZ1(si)−
n∑

i=1

w2iZ2(si)}2
]

Theorem 4.2. The above optimization model can be transformed to the following
cokriging system of linear equations

G w = c (4.8)

where the vector w, c have dimensions (2n+ 2)× 1 and the matrix G has dimen-
sions (2n+ 2)× (2n+ 2). The optimal weights will be obtained as

w = G−1 c.
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Proof. We now minimize σ2
e = E

[
{Z(s0)−

n∑
i=1

w1iZ1(si)−
n∑

i=1

w2iZ2(si)}2
]

as

min E[{Z(s0)− µ1}2]− 2

n∑
i=1

w1iE[Z1(s0)− µ1][Z1(si)− µ1]

− 2

n∑
i=1

w2iE[Z1(s0)− µ1][Z2(si)− µ2] +
n∑

i=1

n∑
j=1

w1iw1jE[Z1(si)− µ1][Z1(sj)− µ1]

+

n∑
i=1

n∑
j=1

w2iw2jE[Z2(si)− µ2][Z2(sj)− µ2] + 2

n∑
i=1

n∑
j=1

w1iw2jE[Z1(si)− µ1][Z2(sj)− µ2]

(4.9)

Denote the covariances involving variable Zi by Cii = σ2
i , the cross-covariance

between variables Zi, Zj by Cij . The covariances and the cross-covariances are

C[Z1(s0), Z1(s0)] = C11(s0, s0) = C11(0) = σ2
1

C[Z1(s0), Z1(si)] = C11(s0, si), C[Z1(si), Z1(sj)] = C11(si, sj)

C[Z1(si), Z2(sj)] = C12(si, sj), C[Z1(s0), Z2(sj)] = C12(s0, sj)

C[Z2(si), Z1(sj)] = C21(si, sj), C[Z2(si), Z2(sj)] = C22(si, sj).

(4.10)

Finally, with the Lagrange multipliers we get:

min σ2
1 − 2

n∑
i=1

w1iC11(s0, si)− 2

n∑
i=1

w2iC12(s0, si)

+

n∑
i=1

n∑
j=1

w1iw1jC11(si, sj) +

n∑
i=1

n∑
j=1

w2iw2jC22(si, sj)

+ 2

n∑
i=1

n∑
j=1

w1iw2jC12(si, sj)− 2λ1

[ n∑
i=1

w1i − 1

]
− 2λ2

[ n∑
i=1

w2i − 0

]
.

(4.11)

The unknowns are w11, ..., w1n; w21, ..., w2n; and the two Lagrange multi-
pliers λ1 and λ2. Take derivatives with respect to these unknowns and set them

equal to zero. For every i = 1, . . . , n, we have
n∑

j=1

w1j = 1,
n∑

j=1

w2j = 0 and

− 2C11(s0, si) + 2

n∑
j=1

w1jC11(si, sj) + 2

n∑
j=1

w2jC12(si, sj)− 2λ1 = 0, (4.12)

− 2C12(s0, si) + 2

n∑
j=1

w2jC22(si, sj) + 2

n∑
j=1

w1jC21(si, sj)− 2λ2 = 0. (4.13)
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Recall that si (i = 1, 2, . . . , n) are sampling places, denote square matrices

[C11] =

 C11(s1, s1) · · · C11(s1, sn)
...

...
...

C11(sn, s1) · · · C11(sn, sn)

 ; [C12] =

 C12(s1, s1) · · · C12(s1, sn)
...

...
...

C12(sn, s1) · · · C12(sn, sn)



[C21] =

 C21(s1, s1) · · · C21(s1, sn)
...

...
...

C21(sn, s1) · · · C21(sn, sn)

 ; [C22] =

 C22(s1, s1) · · · C22(s1, sn)
...

...
...

C22(sn, s1) · · · C22(sn, sn)


and vectors of 2n+ 2 entries

[1] =


1
1
...
1

 ; [0] =


0
0
...
0

 ; W1 =


w11

w12

...
w1n

 ; W2 =


w21

w22

...
w2n

 ;

[C11(s0, si)] =

 C11(s0, s1)
...

C11(s0, sn)

 ; [C12(s0, si)] =

 C12(s0, s1)
...

C12(s0, sn)

 .

The co-kriging system in matrix form is
[C11] [C12] [1] [0]
[C21] [C22] [0] [1]

[1]′ [0]′ 0 0
[0]′ [1]′ 0 0




W1

W2

−λ1
−λ2

 =


[C11(s0, si)]
[C12(s0, si)]

1
0


Put

G =


[C11] [C12] [1] [0]
[C21] [C22] [0] [1]

[1]′ [0]′ 0 0
[0]′ [1]′ 0 0

 ; w =


W1

W2

−λ1
−λ2

 ; c =


[C11(s0, si)]
[C12(s0, si)]

1
0


we have

Gw = c (4.14)

here C12(h) may not be the same as C21(h), |h| = |si − sj | for i, j = 1, 2, ..., n;
the vector w, c have dimensions (2n+ 2)× 1 and the matrix G has dimensions
(2n+ 2)× (2n+ 2). This cokriging system gives us the optimal weights

w = G−1 c.

If G is not invertible, use its generalized inverse. 2

5 Algorithm for coping with missing data points

5.1 What if stations give incomplete or missed data?

However, we got only m = 6 good data points, more than 33% of monitoring
sities (3/9: stations of Hong Bang, Quang Trung and Thu Duc) do not provide
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any numerical information for model fitting. Aiming to increase the accuracy
of prediction, it is useful to discuss few ways for handling this matter. The main
idea of the linear kriging in (3.1) is that the predicted value

Ẑ(s0) =

6∑
i=1

wi Z(si) (5.1)

at certain unknown point s0 infact is just a convex combiation of six observed

value Z(si) at m = 6 monitoring points, where the weights wi fulfill
m∑
i=1

wi =

1 and wi ≥ 0.

Basic techniques like imputation type algorithms [12] can be employed to
fill in numerical values of PM10 and benzen to three defective stations before
exploiting the estimator

Ẑ(s0) =

9∑
i=1

wi Z(si);

9∑
i=1

wi = 1 and wi ≥ 0. (5.2)

With sampling mechanism for our data sets, the monitored data belongs
to the class of missing completely at random (MCAR), i.e. the probability that
responses are missing is unrelated to either the specific values that, in princi-
ple, should have been obtained or the set of observed responses. The essential
feature of MCAR is that the observed data can be viewed as a random sample
of a complete data. However, due to the disticntive nature of our dataset (al-
ready possessing MCAR), the well known imputation methods seem to be not
suitable.

We suggest a data imputation mechanism, named progressively co-kriging
imputation, to predict values at a single unobservable station (from data of
good stations), then recursively extend (enlarge) prediction at the remaining
unobservable stations, since more available info the more precise outcomes we
get. First, we need to decode the cokriging system, as given in Equation 4.8. If
use m good stations (m ≤ n, the total number of originally designed stations)
to predict value at unmeasured station in our case study, the original cokriging
system (4.8) could be more explicitly written as

G w = c, (5.3)

where the vectors w and c currently have dimensions (2m + 2) × 1 and the
matrix G has dimensions (2m + 2) × (2m + 2). The explicit forms of G,w and
c in the next Algorithm 1 are given by
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G =



C11(s1, s1) · · ·C11(s1, sm) C12(s1, s1) · · ·C12(s1, sm) 1 0
...

...
...

...
...
...

C11(sm, s1)...C11(sm, sm) C12(sm, s1)...C12(sm, sm) 1 0
C21(s1, s1) · · ·C21(s1, sm) C22(s1, s1) · · ·C22(s1, sm) 0 1

...
...

...
...

...
...

C21(sm, s1)...C21(sm, sm) C22(sm, s1)...C22(sm, sm) 0 1
1 · · · 1 0 · · · 0 0 0
0 · · · 0 1 · · · 1 0 0


,

w =



w11

...
w1m

w21

...
w2m

−λ1
−λ2


; and c =



C11(s0, s1)
...

C11(s0, sm)
C12(s0, s1)

...
C12(s0, sm)

1
0


.

Our algorithm of progressively imputation allowing us to get possibly accurate
predicted observation value at arbitrary sites in the area of study is given below.

Algorithm 1 Progressively Co-kriging Imputation
INPUT: a finite set V0 of all n designed monitoring sites,
V = {s1, s2, · · · , sm} of observable sites (m ≤ n), V ⊆ V0,
a k×m data matrixM of k observable factors (monitored atm sites), described
in matrix (4.1)
OUTPUT: the fully updated set V of n known sites with available data,
from which observation Z(s) at any location s ∈ CH(V ) can be estimated
by Equation (5.1) and the system (5.3); [CH(V ) is defined by Equation
(3.4)].

If m = n stop, else proceed to next step.
while m < n do

1. Select a a site s0 ∈ V0 \ V (an unmeasured site)
2. Set up the system (4.14) from data M and s0
3. Compute the weight vector w = G−1 c
4. Calculate the predicted value at the site s0
5. Update V := V ∪ {s0}; update m = |V |; update data matrix M ;

end while
return The full network V of all observable sites.
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5.2 Criteria for selecting the best-fit model

We limited the scope of this study to focus on analyzing these four models
(spherical, exponential, linear, and Gaussian), described by Equations (6.1),
(6.2), (6.3), and (6.4).

A critical question we need to answer now is “what model is most suitable
for modeling our sample data”? To answer this, we decide to construct poten-
tial variogram models based on different parameters and compare them, and
then select the best-ft one for our analysis. The model that uses interpolation
is called optimal if it has the lowest error forecast. However, there are other cri-
teria for assessing whether the forecasting model is good or not. Few following
statistics (integrated in GS+) can be used to explain the output of the model.

• First, the residual sum of squares (RSS) is the sum of the squares of
deviations predicted from empirical values. A small RSS indicates a tight
fit of the model to the data.

• Second, the coefficient of determination, r2, is the proportion of the
variance in the dependent variable that is predictable from the indepen-
dent variables. This value is not a strong criterion for fitting the model as
RSS, but used to look at the impact of change in the model parameters.

• Third, the proportion C/(Co+C) statistic provides a measure of the pro-
portion of sample variance (C0+C) that is explained by spatially struc-
tured variance C. This value will be 1.0 for a variogram with no nugget
variance (where the curve passes through the origin).

Conversely, it will be 0 where there is no spatially dependent variation at
the range specified, i.e. where there is a pure nugget effect.

5.3 Choosing suitable variograms for specific stations

The variogram values are presented in Table 4, where the Gaussian model
returns the highest r2 = 0.866, Residual sum of squares(RSS) = 0.007092.
Thus, from the stations s1, s2, s3, s4, s5, s6 we find the best interpolation model
as shown in Table 4, based on RSS, r2 and C/(C0 + C). Using the models
found, we will forecast for three stations Hong Bang, Quang Trung and Thu
Duc, where missing data occurred.

At each of 3 missed data stations, we check assumptions (nudget and sill) of
the four mentioned models to see their applicability, then estimate the Z value
correspondingly with the selected variogram. Next we enlarge the interpola-
tion, paying attention to the RSS, the r2 and the C/(C0 +C) in Table 4. Apply
specifically the suggested cokriging predictor [Formula 4.2] for our dataset
with PM10 and benzen (k = 2), we predict PM10 at an unobservable station,
say Hong Bang, next use current information of m := m + 1 = 7 stations,



Man VM. Nguyen and Nhut C. Nguyen 129

repeat procedure until m = n = 9 (progressively fill in values for Quang Trung,
Thu Duc), then obtain estimated value for the last unmeasured station.

Table 4: Isotropic variograms values of PM10, benzen and two parameters

Estimates of parameters

Data set Nugget Sill Range RSSa r2
C

C0 + C)
and model (m) (m) (m)

C0 C0 + C A
PM10 (n = 6)
Linear 0 0 485 3.96 0.613 -5.508
Gaussian 0 1.487 27107 0.846 0.650 0.999
Spherical 0 1.56 41100 1.07 0.615 0.999
Exponential 0 2 91260 1.14 0.606 1
Benzen (n = 6)
Linear 0 0 466 0.00100 0.869 -33.498
Gaussian 0 0.075 29341 3.71×10−5 0.871 0.972
Spherical 0 0.046 31100 5.724×10−5 0.865 0.998
Exponential 0 0.0765 93300 6.412×10−5 0.861 0.999
PM10 and
benzen n = 6
Linear 0 0 104225 0.060100 0.736 -3.281
Gaussian 0 0.86 71187 0.007092 0.866 0.999
Spherical 0 0.189 41100 0.018000 0.708 0.999
Exponential 0 0.316 123300 0.019300 0.687 1

RSSa is the sum of squares of the residuals from the fitted function.

5.4 Find the estimated prediction variance at sampling points

We multiply Eq. (4.12) by w1i; Eq. (4.13) by w2i and sum over i = 1..n, to get:

−
n∑

i=1

w1iC11(s0, si) +

n∑
i=1

n∑
j=1

w1iw1jC11(si, sj) +

n∑
i=1

n∑
j=1

w1iw2jC12(si, sj)−
n∑

i=1

w1iλ1 = 0

(5.4)
−

n∑
i=1

w2iC12(s0, si) +
n∑

i=1

n∑
j=1

w2iw2jC22(si, sj) +
n∑

i=1

n∑
j=1

w2iw1jC21(si, sj)−
n∑

i=1

w2iλ2 = 0

(5.5)

To simplify the expression for the variance of the predicted value we substi-
tute (5.4) and (5.5) into Eqn. (4.11) (with k = 2):

σ̂2
1 = C11(0)−

k∑
j=1

n∑
i=1

wjiC11(s0, si) + λ1 (5.6)

Due to Table 4, the Gaussian variogram (6.4) is best suited, hence used for
prediction at all three missing data stations. Table 5 then shows comparison of
PM10 outcomes when using the geo-statistical software GS+ (by default) and
the general statistical software R, implemented by our co-kriging imputation
algorithm. More precisely, the predicted value of PM10 for Hong Bang station
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at location s7(693640, 1199790) is Y = 138.83 µg/m3 (by Eqn. 4.2), as a result,
the standard deviation SD(Y ) = σ̂1 = 0.514; predicted values at Quang Trung
- s8(677940, 1200080) and Thu Duc - s9(693640, 1199790) are also shown.

Table 5: Comparison of PM10 outcomes when using GS+ and package R.

Station Station name Realistic Predicted Predicted
value value by GS+ value by R

Y = PM10 SD(Y ) Y SD(Y )

s1 Thong Nhat (TN) 65.99
s2 Binh Chanh (BC) 17.48
s3 ZOO 73.14
s4 Doste (DOSTE) 123.5
s5 District 2 (D2) 73.31
s6 Tan Son Hoa (TSH) 67.33
s7 Hong Bang (HB) NA 137.14 1.98 138.83 0.514
s8 Quang Trung (QT) NA 131.43 1.81 133.83 0.096
s9 Thu Duc (TD) NA NA NA 140.17 0.807

6 Conclusion and future work

For this specific data, we applied Kriging-based interpolation methods to pre-
dict only key pollutant parameters of air pollution, dropping off other impor-
tant parameters such as temperature, humidity, wind, cloud cover, height of
site ... which are key factors for Gaussian class of dispersion models.

In summary, our approach has solved the missing data at monitoring sta-
tions, and clearly produces a more precise prediction than using the default
approach via the popular soft GS+, see [8]. The work’s contributions, in more
details, include exploiting cokriging models in air pollution study in HCMC.
The cokriging approach, elucidated in Section 4.1, captures correlation of pol-
lutants in a powerful identity (4.8), allowing us to figure out value at any
location in the convex hull of observable locations. Secondly, our algorithm
- formulated in Section 5 - can handle of missing data in large scale, which
haven’t been considered in other studies, up to the time of preparing this pa-
per, for instance, see Pham and Doan’s works [1, 17].

Our future work would possibly be conducting the spatial analysis to show
interaction effects of pollutants on prediction, and possibly investigating cok-
riging models with k > 2 covariates, say PM10, SO2, NO2 and benzen, since
interactions of more than two factors could also potentially impact on pre-
dicted values of cokriging models. This is meaningful since the software GS+
is currently not able to obtain optimal co-kriging models and visualize their
variograms of more than 2 pollutant covariates.



Man VM. Nguyen and Nhut C. Nguyen 131

Acknowledgment

The authors would like to thank Dr. Dung Q. Ta, Faculty of Geology and
Petroleum Engineering, VNUHCM, Vietnam. The first author appreciates valu-
able supports of Center of Excellency in Mathematics (CEM), Ministry of Edu-
cation, Thailand, and Department of Mathematics, Faculty of Science, Mahidol
University, Thailand. He thanks Faculty of Environment & Natural Resources,
University of Technology, VNUHCM for support during 2015-2017.

Furthermore, we sincerely appreciate the anonymous reviewer whose valu-
able and helpful comments led to significant improvements from the original
to the final version of the article.

Appendix A: Geostatistical terms and variograms

We employed the following specific geostatistical concepts (Dung [14]).

• Range: as the separation lag h between pairs increases, the correspond-
ing variogram value will generally increase. The distance at which the
variogram reaches the max averaged squared difference between pairs of
values (named plateau) is the range.

• Sill: a concept describes i) the variance of the data (1.0 if the data are
normal), and ii) the plateau that the variogram reaches at the range.

• Nutget: In geostatistical practice, a “nugget effect” refers to a discontinu-
ity at the origin in the variogram; its magnitude (of the discontinuity) is
called the nugget.

• Anisotropy: a concept is applied both to a random function and to it’s
variogram when the values of the variogram depend on both the distance
and the direction, i.e depend on the lag h ∈ R2 or R3.

Geostatistical modeling is generally useful for few activities, such as putting
geological and/or environmental problems into quantitative models, as a re-
sult, estimating important parameters of the processes of interest, quantifying
uncertainty, sample designing, simulation and risk analysis...

In particular, a variogram is a geostatistical model used to examine the
spatial continuity of a regionalized variable and how this continuity changes as
a function of a lag h (including distance and direction).

Computation of a variogram involves plotting the relationship between the
variogram (γ(h)) and the lag (h). We write h = |h|, the norm of h in the fol-
lowing most commonly used variogram models: spherical, exponential, linear,
and Gaussian.
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Spherical model. The spherical function is one of the most frequently used
models in geostatistics (Webster [13]). The spherical model is a good
choice when the nugget variance is important but not too large, and when
there is also a clear range and sill (Burrough [5]):

γ(h) =


0, h = 0,

C0 + C1( 3
2
h
a −

1
2 (h

a )3), 0 < h < a,

C0 + C1, h ≥ a,
(6.1)

where

• γ(h) is the semivariance,

• a is the range,

• C0 is nugget variance, and

• C0 + C1 is the sill.

Exponential model. The exponential model is a good choice when there is a
clear nugget and sill but only a gradual approach to the range:

γ(h) = C0 + C1(1− exp(−h
a

)) (6.2)

Linear model. This is a nontransitive variogram as there is no sill within the
area sampled and typical attributes vary at all scales:

γ(h) = C0 + bh (6.3)

where b is the slope of the line.

Gaussian model. If the variance is very smooth and the nugget variance is
very small compared to the spatially dependent random variation, then
the ariogram can often be best fitted with the Gaussian model ([5]):

γ(h) = C0 + C1(1− exp(−h
2

a2
)) (6.4)
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