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Abstract

This is a report on an effective simulation method for analyses of
optical material such as photonic crystal materials, Photonics Crystal
Fibers... This method is based on the Finite Difference Time Domain
(FDTD) algorithm. We observed the temporal dynamics of light waves
in a bent fiber in a simulation, and obtained the electromagnetic fields as
a function of optical wavelength for the commercial photonic crystal layer
or fibers. The accuracy of this method was verified by good agreement
between the simulation and experimental data.

1. Introduction

The Finite Difference Time Domain (FDTD) method is the formulation of
Maxwells equations in the time domain and this method was introduced by K.
Yee in 1966 [1]. Maxwells curl equations are discretized in space and time by
approximating with centered two-point finite differences. The flexibility and
capability of studying complex structures, easy implementation, visualizing the
time-varying fields with the volume of space, handling nonlinear, frequency de-
pendent, and conducting materials, obtaining easily broad spectral information
by a single run made FDTD a powerful and versatile numerical tool. FDTD
provides EM field variations in space with respect to time [2,3].

Theoretical studies of guided modes in PCFs have been performed based
on a wide variety of techniques, which include the full vectorial effective index
method, plane wave expansion method, finite element method, the localized
basis function method, and the finite-difference time domain (FDTD) method
[4].

101



102 The Finite-Difference Time-Domain Method...

In this paper, we study the FDTD technique for full analyses of micro-
structured or photonic crystal fibers. Compared with other techniques, the
FDTD method has most simple and straightforward algorithm for solving time-
dependent electromagnetic problems. The algorithm contains minimal assump-
tions and approximations and thus provides fairly reliable results as long as the
spatial and temporal resolutions are high enough. Currently the FDTD tech-
nique is one of the most popular techniques for the study of the 3-dimensional
photonic crystal structures such as nano-cavities and waveguides. There also
have been a few reports on the 2-D FDTD method PCFs and the calculation
of the elementary properties of PCFs were demonstrated.

Here we present the full aspects of FDTD technique modified for the anal-
yses of photonic crystal fiber and demonstrate its wide range of capabilities.
This paper will help understand the basic principles, optimization techniques,
and learn how to apply this method for their own purposes. This paper, the
basic algorithm of the modified FDTD method used in this study is summa-
rized. The principle of Yee cell is introduced in the first part 2. The third part
3 will explain about basically formulation of 3D-FDTD. Phase matching layer,
boundary condition, are described in detail in the part 4, 5. The conclusions
of this chapter are in part 6.

2 Three Dimensional FDTD Algorithm

The FDTD method is based on an algorithm that calculates the temporal
evolvement of the electromagnetic fields. Maxwells equation is solved at each
discrete time by a so-called Yee-cell technique on a discrete three-dimensional
mesh. In Yees, the grids for E and H fields are interleaved in the space and
the positions of the electric and magnetic field components in a unit cell of
the FDTD lattice in Cartesian coordinates as shown in Figure 1. In a 3-
D case, each E component is surrounded by four H components and each H
component is surrounded by four E components in computation. The adjacent
field components are needed to generate another field component as time is
marching. An arbitrary material object can be approximated by building up
unit cells for which field component positions are disposed with the desired
values of permittivity and permeability. Also, the arbitrary object may consist
of different kinds of materials. Once the geometry of the object is specified in
the calculation region, source condition is modeled somewhere in the region.
Initially, it is assumed that all fields within the numerical simulation region
are identically zero. Then, an incident wave is enforced to enter the simulation
region. All the E components in the 3-D spaces are calculated first, and stored
in memory for a particular time point using the H components previously stored
in memory. Then all the H components are updated and stored in memory
using the E data just computed. Therefore, the electric and magnetic field
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Fig. 1. Conventional Yees 3-D mesh.

components are evaluated at different time spots and at different grid points,
shifted by a half period both in space and time. This process is repeated over
multiple periods [3].

Let us first consider a region of space which is source-free and lossless. Using
the MKS system of units, Maxwells curl equations are expressed as:

∇× E = −μ
∂H
∂t

(1)

∇×H = ε
∂E
∂t

(2)

where ε = εrε0 is the electrical permittivity constant in farads/meter and is
the magnetic permeability constant in henrys/meter. Assuming that ε and μ
are scalar quantities (that is, the medium is assumed to be isotropic, linear,
non-dispersive), expanding the curl expressions in (3-1), and equating the like
components yields the following system of equations,

∂Hx

∂t
= − 1

μ
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(3a)
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)
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The system of six coupled partial differential equations in (3) and (4) forms
the basis for the FDTD analysis of electromagnetic wave interactions with gen-
eral three-dimensional objects. It should be noted that the electric and mag-
netic field components (Ex, Ey, Ez, Hx, Hy, and Hz) are inter-related. Since
these equations are functions of space and time, they can be discretized in the
space and time domains and used to find field solutions numerically. Referring
to Figure 1, we denote a grid point in the rectangular lattice as

(i, j, k) = (iΔx, jΔy, kΔz) (5a)

and any function of space and time as

F n(i, j, k) = F (iΔx, jΔy, kΔz, nΔt) (5)

where Δx, Δy, and Δz are, respectively, the lattice space increments in the
x, y, and z coordinate directions and Δt is the time increment, while i, j, k,
and n are integers. Using central finite difference approximation for space and
time derivatives that are accurate to second order, the partial derivatives are
expressed as

∂F n(i, j, k)
∂x

=
F n(i + 1

2
, j, k) − F n(i − 1

2
, j, k)

Δx
+ O(Δx2) (6a)

∂F n(i, j, k)
∂x

= F 1+1
2 (i, j, k) − F n−1

2 (i,j,k)Δt + O(Δt2) (6b)

Applying (6) to the space and time derivatives in (3a), (3b), and (4c),
we obtain the following FDTD approximation as representative relations in a
three-dimensional FDTD formulation
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It is understood from (7a) that Hx is located at (i, j 1
2
, k + 1

2) the H and E
components are interleaved within the unit cell, and that the new value of a
field vector component (Hx) at any lattice point depends only on its previous
value and the previous values of the components of the other field vector at
adjacent points. Then, the next computation of the field vector is continued as
time is matching by a given time step.

It is generally assumed that fibers have no variations along the direction
of propagation, and variations of material properties (such as refractive index)
are limited to the transverse directions. Holey fibers that will be analyzed
here are assumed to have geometries such that the refractive index is uniform
along the z-axis. A schematic of a cross section of an example holey fiber
is illustrated in Figure 2. Thus, instead of using a full-wave analysis based
on (3) and (4) to numerically model the waveguide structures, we can take
advantage of properties of the propagating modes to simplify the formulation.
The components of electric and magnetic fields in waveguides with no variations
along the direction of propagation (z-axis) can be expressed as

F (x, y, z) = F (x, y)e−jβz (8)

where β is the axial propagation constant. Using (3-8) and employing the
notations of space and time in FDTD, the adjacent electric and magnetic fields
in the axial propagation direction are related as

En(i, j, k ± 1) = En(i, j, k)e∓jβΔz (9a)

Hn(i, j, k ± 1) = Hn(i, j, k)e∓jβΔz (9b)
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Now, the electric and magnetic fields become complex quantities based on
phasor notations. The first-order partial derivatives with respect to z in the
discretized space domain require two adjacent fields. The two adjacent fields
can be represented by a field at the mid point between them. Furthermore, the
first-order partial derivatives with respect to z in (3.3) and (3.4) are replaced
with −jβ, because the z-dependence of fields is as exp(−jβz). Based on these
two facts, the following expressions are obtained,

{En(i, j, k + 1) − En(i, j, k
Δz

}
= jβEn(i, j, k +

1
2
) = −jβEn(i, j, k)e−jβ Δz

2

(10a){Hn(i, j, k + 1) − Hn(i, j, k)
Δz

}
= −jβHn(i, j, k +

1
2
) = −jβHn(i, j, k)e−jβ Δz

2

(10b)
Substituting the electric and magnetic field components from (10) into (7),

we can establish the formulation system for 3D-FDTD which can calculate the
electromagnetic propagation in fiber.

With above equation systems of finite difference expressions, the new value
of an electromagnetic field vector component at any lattice point depends only
on its previous value, the previous values of the component of the other field
vector at adjacent points, and the known electric and magnetic current source.
Therefore, at any given time step, the computation of a field vector can proceed
either one point at a time, or, if p parallel processors are employed concurrently,
p points at a time.

The optical pulse propagation along a fiber can be directly simulated if a
computation structure includes a 3-dimentional piece of fiber of which length
is much longer than the pulse width. Such a simulation requires enormous
memory and computation time, making the FDTD method impractical in those
cases. However, when considering continuous wave propagation along the fiber,
both the electromagnetic wave and dielectric structure remain constant along
the fiber length, with only exception of continuous increment of the optical
phase. Therefore, the 3-dimentional fiber structure can be reduced to the one
with arbitrary short length if a proper boundary condition is applied to count
the optical phase difference along the length as show in next part.

3. Boundary Conditions

To truncate the computational region boundary conditions are required. They
should absorb the out-going EM field by suppressing the spurious back reflected
energy regardless of the polarization, propagation direction, and frequency. Ab-
sorbing boundary condition (ABC), perfectly matched layer (PML), or periodic
boundary condition (PBC) are usually implemented with FDTD. Below I out-
line briefly the PML and PBC.
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3.1 Perfectly Matched Layer
When an arbitrary electromagnetic object is analyzed numerically using

FDTD, regions extending to infinity need to be modeled carefully. For ex-
ample, in PCF analysis using FDTD, the center region is surrounded by very
large cladding medium (usually silica). Modeling infinite media, whether they
are modeled in one-, two-, or three-dimensional space, is practically impossible
because of computer memory limitation even with the advanced current tech-
nology. This fact spells out the need for a special method to simulate regions
extending to infinity. One way to model an infinite medium is to introduce an
absorbing boundary condition (ABC) at the outer lattice boundary. Somehow,
the outer boundary should be matched to an absorbing material medium. This
is analogous to the physical treatment of the walls of an anechoic chamber. Ide-
ally, the absorbing medium is only as thick as a few lattice cells, reflectionless
to all impinging waves over their full frequency spectrum, highly absorbing,
and effective in the near field of a source or a scattered.

In order to obtain a finite-sized calculation, the number of grid points should
be finite. At the spatial boundaries of the calculation domain, the electromag-
netic should satisfy condition such, that the space outside this domain in a
desired way, e.g., a non-reflection continuation of the structure inside the cal-
culation window. To make energy crossing the boundary not return inside the
calculation window, usually a layer of absorbing material along the boundary
is introduced. The best solution known is the induction of perfect matched
layers (PMLs) that were introduced by Bérenger.

In 1994, Bérenger introduced a highly effective ABC, which is designated
as perfectly matched layer (PML). The innovation of Berengers PML is that
plane waves of arbitrary incidence, polarization, and frequency are matched
at the boundary. For this, Berenger derived a novel split-field formulation of
Maxwells equations where each vector field component is split into two orthog-
onal components. Each of the components is then expressed as satisfying a
coupled set of first-order partial differential equations. By choosing loss pa-
rameters consistent with a dispersionless medium, a perfectly matched planar
interface is established [5,6].

Particularly in our method, the computational domain is surrounded by
a lossy material that absorbs the unwanted reflections such that the field is
decaying exponentially inside the PML region. This method is just a math-
ematical model with no physical medium. The wave impedance is matched
at the boundary between the computational domain and absorbing layer by
splitting the field Hz = Hzx + Hzy for TE and Ez = Hzx + Hzy for TM and
assuming σ

ε = σ∗
μ where σ and σ∗ are the electric and magnetic conductivity,

respectively.

In the PML layer, exponential differencing has to be used because the field
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decays quickly so linear differencing is not adequate. There may be a small
reflection from this layer but the reflected field travels the PML region towards
the computational domain and it is attenuated second time[7]. So if the PML
layer thickness is large enough the back reflected field is usually very small in
amplitude. The expressions for the boundary layers around the computational
domain are

ε
∂Ex

∂t
+ σyEx =

∂Hz

∂y
=

∂(Hzx + Hzy)
∂y

∂Ey

∂t
+ σxEy = −∂Hz

∂x
= −∂(Hzx + Hzy)

∂x

μ
∂Hzx

∂t
+ σ∗

xHzx = −∂Ey

∂x

μ
∂Hzy

∂t
+ σ∗

yHzy = −∂Ex

∂y

(11)

The formulation for TM case is similar to the TE one [8].

Figure 2 shows the cross section of a PCF is surrounded by PML region,
where x and y are the transverse directions, z is the propagation direction.
There is no PML in the upper and lower plane of PCF. The phase matching
condition will be applied in these planes.

3.2 The Periodic 3D-FDTD Algorithm
Since the optical wave has no variation along the length except the phase

in the above situation, the computation structure for the FDTD method can
be reduced to one slice of the bent fiber with an arbitrarily small thickness.

The optical pulse propagation along a fiber can be directly simulated if
a computation structure includes a 3-D piece of fiber whose length is much
longer than the pulse width. Such a simulation requires enormous memory
and computation time, making the FDTD method impractical in such cases.
However, when considering continuous wave propagation along the fiber, both
the electromagnetic wave and dielectric structure remain constant along the
fiber length, with the exception of a continuous increment of the optical phase.
Therefore, the 3-D fiber structure can be reduced to an arbitrarily short length
if a proper boundary condition is applied to account for the optical phase
difference along the length, as shown in Fig. 3.2. Now the electromagnetic
fields at the boundary layers can be updated using the fields at the opposite
boundary layer after applying this phase difference.

For minimum calculation time and memory requirements, the computa-
tional domain may include just one computation grid along the z-axis with a
size of Δz, which makes it a (effectively) 2-D structure. The propagation con-
stant β along the z direction is specified by the user, and the phase difference
between the upper and lower boundaries of a unit grid is Δϕ = βΔz. Here
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we used both real and imaginary parts for E and H fields to define the optical
phase. The absorptive layers are employed at the boundaries in the x−y plane.

The optical variation (in phase or amplitude) along the z axis is usually
much faster than those along the x and y axes, and thus a high grid reso-
lution along the z-axis is essential for accurate simulation. Here we adopted
anisotropic resolution along each axis to increase the resolution for the z-axis,
while keeping the resolution along the x- and y-axes low to reduce memory
requirements and computation time.

This approach is very similar to the 2-D FDTD method reported previ-
ously. The 2-D FDTD algorithm is definitely more compact than our 3-D case.
However, it should be noted that our method retains the original 3-D FDTD
algorithm, and thus it can handle both 3-D and 2-D structures without need of
modification of the codes. (The boundary condition does nothing in the case of
3-D simulation since the absorptive layers are also imposed at the z-boundaries
and the field intensities become zero.) Thus, it gives us greater flexibility com-
pared to the 2-D FDTD method developed solely for 2-D waveguides or fibers
[9].

4. Parameters and Stability

There are several parameters to choose for FDTD computer simulation of di-
electric waveguides. First, appropriate computer memory size for calculation
needs to be prepared. Basically, larger calculation matrix size will produce
better accuracy. But if the matrix is too large, the required time for simulation
will be unnecessarily too long. With proper size of the simulation region, size of
PML should be considered. We need to make sure that the cell size is adequate
for perfectly matching to the outer boundary. Then, parameters that define
geometry and material properties of a waveguide need to be considered. They
can be the core radius or refractive index of a step-index fiber, the cladding
refractive index, or the side length if a fiber to be simulated has square core.
Using the parameters to define the cross section, one can create any type of
optical fiber. Finally, we need to choose a reasonable value for β. In other
words, what we are trying to find in the FDTD simulation is the wavelength
associated with the β value of the desired mode.

We have just seen that the choice of spatial resolutions Δx, Δy, Δz and
time resolution Δt can affect the propagation of numerical waves in Yee space
lattice, and therefore the numerical errors. This part, we show that Δt must
also be bounded to ensure numerical stability.

A stability limit is determined by choosing a suitable time step Δt to ensure
the solutions with purely real frequencies for all the possible wave vector k to
ensure the numerical stability of the above FDTD time step, the time step
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Fig. 2 The cross section in xy plane and xz plane of the computational
domain. Black represents silica regions and white represents vacuum. The

gray region on the edges denotes the phase match layer (PML).
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should satisfy

Δt ≤ Δtmax =
1

c
√

1
(Δx)2 + 1

(Δy)2 + 1
(Δz)2

(12)

where c is the speed of the light.

5. Simulation Procedure

The simulation results we obtain from the FDTD computation are only elec-
tromagnetic field distributions. To extract certain information from the raw
data, an interpretation step is required. Usually more than one simulation run
is required to obtain desired information. In this section, we describe our sim-
ulation procedure and discuss how we interpreted the simulation results. The
complete simulation procedure is as follows:

- Setup: the computation structure (geometry and grid sizes Δx, Δy, Δz);
field excitation (location, center frequency, frequency bandwidth, and field po-
larization); propagation constant (β); and field-observation points are described
in the setup file.

- Simulation: the E and H fields are computed and updated at each time
step (T). Some of the field components are saved in storage for post-processing,
as specified in the setup file.

- Post-processing: The stored field data are analyzed in the time, frequency,
and spatial domains.

6. Conclusion

We proposed an efficient numerical method for bending analyses of optical
material, especially Photonic Crystal Fiber, based on the FDTD. The time-
domain simulation of the optical propagation in a fiber provided a view of
the temporal dynamics of the optical field as well as the mode profile. The
technique outlined here is directly applicable to not only PCFs, but also any
kind of waveguides with arbitrary index profiles. It is important to note that
this FDTD method can be easily extended by adding new functions to include
nonlinear or strain effects in the simulation. We believe it is a useful tool for
analyses and design of various micro-structured fibers
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