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Abstract

Current research is beginning to adopt deep neural network models on
human activity recognition to extract features automatically from sensor
data rather than relying on carefully designing suitable feature represen-
tation. However, there is just a few of custom deep architectures are
explored. In this paper, we presents experiments on three deep leaning
models for human activity recognition using wearable sensor. The effec-
tiveness of the three deep neural networks is validated on accelerometer
data from two public datasets. The results show that with enough sen-
sor input data, highway convolutional networks provide higher accuracy
than the other deep learning models.

1 Introduction

Activity recognition is playing an important role in supporting people’s daily
life with a wide range of applications such as situated services [16], energy ex-
penditure estimation [19], etc. In these applications, wearable sensors are used
to capture the movements or behaviours of users or objects. In addition, signal
processing and machine learning techniques can be applied to automatically
recognize what and when an activity is being performed by a user in real time.

As activity recognition is a time series problem, the main task for analysing
sensor data stream are often to extract useful features in segmented data/frame
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using sliding windows and to classify those portions of data that cover activities
of interest with the trained activity models. In this task, one of the keys
to successful activity model is the appropriate feature representations of the
sensor data. The predominant approach to feature representation is feature
engineering obtained by heuristic processes. These features are investigated
carefully in [4] and most of them are statistical metrics calculated directly on
the raw sensor data within a frame. However, to discover suitable feature
representations we need application-specific expert knowledge. This task is
extremely difficult because human activities are too complex and temporal
dynamics.

A better approach is using multilevel features which have shown good recog-
nition performance in recent activity recognition works [9, 10, 24]. The features
are extracted from sequential data based on feature learning using bag of fea-
tures, which can automatically discover meaningful representation of data to
be analysed. However, to generate higher level feature automatically, we still
have to utilize simple local features which are extracted from small segments
of each activity frame.

Current researches adopt deep learning techniques to extract features auto-
matically from raw sensor data and the results are very promising [1, 6, 14, 23].
One of the advantage of this approach is it can completely substitute for man-
ually handcrafted feature extraction. Moreover, by using many layers of non-
linear information processing for feature extraction and classification, deep
learning techniques allows for in-depth analysis of the underlying data since
the new representation implicitly highlights the most informative portions of
the analysed data. Also, in computer vision, audio and text processing [12, 13],
deep learning techniques have outperformed many conventional methods.

In this paper, we provide a systematic exploration of the performance of
state-of-the-art deep learning approaches on two public wearable activity recog-
nition datasets. These are three models: convolution neural network (CNN),
highway convolutional neural network (Highway CNN) and residual neural net-
work (ResNet). The suitability of each models and hyper-parameters are in-
vestigated. The results show that with enough sensor input data, the highway
CNN provides better results than the other deep learning models.

2 Related Work

Recent researches on wearable activity recognition using deep learning tech-
niques such as [6, 14, 15, 17, 23] have achieved good results. The author of
[17] used Deep Belief Networks which are RBMs consisting of 4-layers with
1024 units in each hidden layer and 30 units in the top one. The proposed
deep models achieved good result compared to other models using conven-
tional classifiers. Zeng et al. in [23] proposed CNN with partial weight sharing
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to recognize activities using accelerometer data. Compared to RBM (a fully
connected DNN model), their proposed CNN model achieved higher accuracy.
Similarly, Pham et al. in [15] achieved a promising results with the CNN-based
models for their smart shoes system. The work of [1] shown a better recognition
improvement with their proposed DBNs which consists of one Gaussian-binary
RBM and some binary-binary RBMs with the input as spectrogram of win-
dowed excerpts from acceleration data stream. The works of [6, 14] utilise the
long-short term memory (LSTM) architecture for the recurrent neural network
for the activity recognition and achieved reasonable results.

In other research fields like speech and image processing, ResNet [7] and
Highway Network [18] have shown substantial improvements in accuracy but
never been used in wearable activity recognition. In this paper, we explore
these deep models and compare their performance with CNN models.

3 Deep Learning Models for Activity Recogni-

tion

Because the complexity of human activity, feature extraction for activity recog-
nition using wearable sensors is challenging [3]. There are high-level activities,
each consists of several basic activities and these basic activities are closely
correlated to each other. Moreover, even activity signals of the same activity
performed by same individual may vary depending on many factors [3]. This
kind of distortions and local dependencies in activity signal can be effectively
captured by deep learning models.

Besides that, the recent trend in designing neural network is deeper, which
are from ten layers deep to even hundreds of layers deep [7, 8, 18]. For many
applications, especially in image recognition, it shown that with the proper
training method, the deeper neural networks, the better the performance. In
this paper, beside CNN-based model, we use ResNet and Highway Convo-
lutional Neural Network (Highway CNN) [7, 18] to recognize activity using
accelerometers.

3.1 Data processing

Accelerometer data from the sensor are often ambiguity and noisy. The noise of
sensor can either be from outside factors causing some samples dropped or the
sensors themselves generating noisy readings (e.g. too large or small values).
In such cases, a filter is applied to remove noises and to fill out the lost samples.
The data filter performs both a low-pass filtering for removing abnormally too
low sample values, and a high-pass filtering for removing abnormally too high
sample values. Next step, samples are grouped into sliding windows or frames.
If a frame contains less than 75% of its full complement, it is discarded on the
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grounds as there is insufficient information to classify activities. Otherwise, it
is smoothed using a cubic spline interpolation method [20]. This step is often
called pre-processing.

The next step of data processing is segmentation. The input signal stream
is segmented into frames or windows, which are then classified as belonging to
different types of activities. In this study, we use the sliding window length
of 64 data points and 50% overlap between two consecutive windows. This
is similar to the setting of ECDF method used in [17] which we will use to
compare the performance with our proposed methods. In the next section, we
will describe our proposed deep learning models: CNN, RestNet and Highway
CNN. All of our neural networks take frames of 3D acceleration time series as
input data. This means each frame comprises of three channels (corresponding
to X, Y, Z axes).

3.2 Convolutional neural network for activity recognition

Our CNN model is stack of convolutional, max-pooling, fully-connected, dropout
and softmax layers. A convolutional layer consists of a set of independent and
learnable filters, which can learn when it detects some specific type of features
at some spatial position in the input. In this layer, spatial local dependencies
are exploited by enforcing a local connectivity constraint between units and
adjacent layers. Each unit is connected to only a small region of input frame.
Rectified linear unit (ReLU) is used as activation function for the convolution
layer because it is better in most situations compared to other activation func-
tion. To reduce the spatial size of the feature maps, we use pooling layer. It
also help to retain the most important information and can reduce number of
parameters and computations of the neural networks, hence to control overfit-
ting. The final layers are two fully-connected layers and a softmax layer. A
fully-connected layer perform high-level reasoning in the neural networks by
taking the features extracted from convolution and pooling layers and learning
non-linear combinations of the features. The last layer sofmax is used to pre-
dict a single class of various mutually exclusive classes based on training set.
In this CNN model, we use two blocks of convolution and pooling layers. A
dropout layer is used after the second fully-connected layer for regularization.
It can help to decrease overfitting by avoiding training nodes on all training
data, then lead the network to learn more robust features [21].

For convolutional layers, the higher layers often use broader filters to process
more complex parts of the input. Therefore, we use 64 filters for convolutional
layer 1 and 128 filters for convolutional layer 2. Both convolutional layers apply
filters with same width of 5 and stride of 1. The width of 5 is also used for all
max-pooling layers in the experiment. The dimension of two fully-connected
layers is set to 500. And for the dropout layer, the probability of selecting units
is set to 0.5.
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3.3 Residual networks for activity recognition

If we just simply stack more typical layers or blocks such as convolutional or
fully-connected layers together, performance of the deep networks will decrease.
The problem is when using backpropagation for training traditional neural net-
works, the gradient becomes slightly diminished as it passes through each layer
of the network and may disappear for the very deep network [5]. This problem
can be solved using a deep residual learning framework or ResNet [7]. At each
layer in ResNet, they use a shortcut connection to send the gradient signal
backward smoothly. Formally, in ResNet, a residual layer is defined as: y =
F(x) + x. In which x, y are the input and output vector of the layers consid-
ered. The function F(x) represents the residual mapping to be learned, which
can be convolution, matrix multiplication, or batch normalization, etc. The
“+x” at the end is the shortcut. Based on this, the gradient can pass back-
ward directly. Moreover, by stacking these layers, gradient can pass through
the network without being diminished.

In our proposed model for activity recognition, we use a convolutional layer,
then 8 residual bottleneck blocks [7]. A bottleneck residual block makes residual
networks more economical compared to the basic residual block. Similar to
CNN model, we use ReLU activation for the convolution layer and residual
layers. Next layer is pooling which can help to reduce the spatial size of the
feature maps and the number of network parameters. Two fully-connected
layers are used for high-level reasoning in the neural networks before the last
layer softmax for classification. To control over-fitting, we also use two dropout
layers, each on the outputs of the fully-connected layers.

In the convolution layer of the ResNet, we use 32 filters with size of 12 and
stride of 1. Max pooling layer has width of 5 and the dimension of the first
fully-connected layer is 1024 and the dimension of the second is 30. For the
two dropout layers, the activation of randomly selected units during training
to zero is set with probability of 0.8.

3.4 Highway networks for activity recognition

Highway network [18] is another architecture which can solve the problem of
gradient vanishing because it uses the shortcuts as introduced in ResNet. The
difference is the shortcuts are modified with a learnable parameter. This pa-
rameter can serve as gating unit which learn to regulate the flow of information
through a network. Layers in Highway Network are defined as:

y = H(x, WH) ·T(x, WT) + x · (1 − T(x, WT)) (1)

Here, T is called transform gate. Notice that, if T (x, WT) = 0, then y = x
and if T (x, WT) = 1theny = H(x, WH). Therefore, a highway layer can act as
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a plain layer or a layer which simply passes its input through depending on the
output of transform gate.

Our Highway CNN model follows this architecture with stack of highway
convolution layer, pooling layer, batch normalization layer, activation layer,
fully-connected layers and softmax layer. Each block of highway convolution
contains three highway convolutional layers, then a max-pooling layer and a
batch normalization layer. Max-pooling layer is used to reduce number of
parameters for the networks and the batch normalization can help to speed up
the training process as well as to reduce the sensitivity to network initialization.
In this model, we use five blocks of highway convolution with different filter
sizes. All filters have same stride of 1 and width of 4, 8, 12, 8, 4 respectively.
Similar to the two above models, we use ReLU as activation functions for
highway convolution layers and fully-connected layers. The size of two fully-
connected layers for high-level reasoning is 1024 and 256 respectively. For the
last layer, the softmax layer is used for classifying different activities. Also for
regularization, a dropout layer is used after each fully-connected layer. The
probability value of 0.8 is used to control overfitting.

4 Experiment Evaluation

This section presents two datasets used for the three proposed deep learning
models for wearable activity recognition. Furthermore, this part also shows the
configuration parameters applied in the experiment of individual models and
the evaluation metrics.

4.1 Dataset

The experiments are conducted on two public datasets widely used in activity
recognition research. Both of them contain data streams from tri-axial ac-
celerometers worn on subjects, which performed various activities in different
contexts. A sliding window with a size of 64 sample points and 50% overlap is
used to segment the data streams into frames.

The first dataset is Activity Prediction [11] which contains accelerometer
data for six daily locomotor activities performed by 36 participants under labo-
ratory settings. These are walking, jogging, ascending stairs, descending stairs,
sitting, and standing, which are regularly performed by many people in their
daily routines. Most of these activities involve repetitive motions and there are
no background activities included. Each participant carry a cell phone in the
pocket and the frequency of accelerometers in the phones is set at 20Hz. Frame
size of 3.2 seconds is used. Totally, the dataset consists of 29,000 frames, which
is the biggest dataset used in the experiment.

Second dataset is Skoda Mini Checkpoint [22]. The acceleration data was
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collected from assembly-line using multiple worn accelerometers in a car main-
tenance environment. We restrict our experiments to a single sensor worn on
the right arm and create a subset from the original dataset. The new dataset
Skoda contains 10 fine-grained activities plus unknown activities. With sam-
pling rate of 48Hz, the Skoda dataset consists of 7,500 frames.

4.2 Experiment Settings

4.2.1 Evaluation metrics

In this paper, F-measure (F1 or harmonic mean) are used as measurement
metric because it can measure the correct of classification of each class equally
important. This metric also can be used to compare performance of differ-
ent methods more easily. F1 score combines two measures which are precision
and recall. The precision presents the rate of correct classification/prediction
of a class, while the recall illustrates the rate of actual correct classifica-
tion/prediction. F1 score presents the average of both precision and recall,
therefore, it facilitates the performance comparison among classification mod-
els.

These measurements are defined as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F 1 = 2 × Precision × Recall

P recision + Recall
(4)

where TP (true positives): correct classifications of positive cases; FP (false
positives): incorrect classifications of positive cases into negative class; FN
(false negatives): incorrect classifications of negative cases into positive class.

In order to evaluate the performance of classification models, 10 folds cross-
validation is used in the experiment. This validation technique divides the
dataset into 10 parts such that 9 parts is employed for training and the last
one is for testing. This technique is repeatedly applied until all of 10 parts
are passed through the model. The measurements are computed by applying
average functions.

4.2.2 Parameters of classification models

All of the proposed deep neural networks are built and trained by TFLearn
library [2], a lightweight library featuring a higher-level API for TensorFlow to
build and train neural networks. The model training and classification are run
on a GPU with 1920 cores, 1506 MHz clock speed and 8 GB RAM.
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Table 1: F1 score of the three proposed deep neural network models
Method Mean of F1 score (%)

Activity Prediction Skoda
CNN 97.68 87.09
ResNet 97.87 79.28
Highway CNN 98.48 85.56
PCA+ECDF 95.34 88.25

For training three proposed neural networks, we minimize the negative log
likelihood using Adam optimizer, with learning rate of 0.001. All the networks
are trained using mini-batches, where each mini-batch contains 64 frames and
is stratified with respect to the class distribution in the training set and number
of epochs used is set to 100.

4.3 Results

In the experiment, we evaluate the activity recognition result of four methods as
shown in the first column in Table 1 using F1-score where this factor combines
both precision and recall. These four methods including our three proposed
deep neural network methods and a non-deep learning based state-of-the-art
method called PCA+ECDF. This is a feature learning method proposed by
Plotz et al. [17], which is based on PCA and ECDF combined with 1-NN clas-
sifier. We re-implemented the methods in Python and kept the best parameter
values as reported in their paper [17].

As can be seen from the Table 1, all methods achieved high F1-scores on
Activity Prediction dataset (more than 95%) while Skoda dataset proves to be
more difficult in classification. The Skoda dataset consisting of 10 fined-grained
activities with unknown activities are more challenging than Activity Predic-
tion dataset containing only 6 simple daily activities without any background
activities.

Precisely, on Activity Prediction dataset, the proposed Highway CNN model
ranks the top by having F1-score at 98.48%; closely followed by the models
of ResNet and CNN at 97.87% and 97.68% respectively. On this dataset, the
improvements of the three deep learning models over PCA+ECDF is noticeable
with almost 2.4% difference compared to the third best method ResNet. This
result is not only showing that the three proposed deep learning models are
more effective than PCA+ECDF in activity recognition but highway CNN with
better way of using shortcuts is more effective than ResNet and CNN (without
using any shortcut as ResNet or Highway CNN).

However, on Skoda dataset, the results are very different as PCA+ECDF
ranks the top with F1-score at 88.25%. In addition, result of Highway CNN
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is even worse than CNN. This can be explained that the Skoda dataset has
only 7,500 frames, which is not enough for training a good deep neural network
model. Especially for models with big size like ResNet and Highway CNN, the
amount of data required is much larger. Due to the lack of training data, these
very deep learning neural networks could not be optimized and therefore result
in degradation in recognition performance.

5 Conclusion

This paper conducts an investigation on three deep leaning models for hu-
man activity recognition using wearable sensor. Furthermore, the paper exam-
ines the performance of these deep neural networks against one state-of-the-art
conventional classification model using PCA and ECDF [17]. The 10 times
cross-validation method is applied in order to evaluate the raw performance
of interested models on activity recognition using accelerometer data over two
widely used datasets. The performance of all proposed deep neural networks
is better than that of PCA+ECDF model. The experiments also show that,
with enough training data, deeper neural network architectures like ResNet and
Highway CNN are better than CNN, a normal deep architecture. Otherwise,
the recognition performance will get degradation. In addition, with appropriate
way of using shortcuts in network architecture, Highway CNN is more effective
than ResNet.
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[17] Thomas Plötz, Nils Y Hammerla, and Patrick Olivier. Feature learning for activity
recognition in ubiquitous computing. In IJCAI Proceedings-International Joint Con-
ference on Artificial Intelligence, volume 22, page 1729, 2011.

[18] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.
arXiv preprint arXiv:1505.00387, 2015.

[19] Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. Activity recognition in
the home using simple and ubiquitous sensors. Springer, 2004.

[20] Grace Wahba. Spline interpolation and smoothing on the sphere. SIAM Journal on
Scientific and Statistical Computing, 2(1):5–16, 1981.

[21] Sida I Wang and Christopher D Manning. Fast dropout training. Proceedings of the
30th International Conference on Machine Learning, 28:118–126, 2013.

[22] Piero Zappi, Clemens Lombriser, Thomas Stiefmeier, Elisabetta Farella, Daniel Roggen,
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