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Abstract

The paper shows that the response of the random Rayleigh system,
which is under harmonic and random excitations, can be found by a
system of algebraic equations. The analytical approach is based on
the stochastic averaging method and equivalent linearization method in
Cartesian coordinates so that the Fokker-Planck equation associated with
the linear equations obtained can be solved exactly by the technique of
auxiliary function. The harmonic excitation frequency is taken to be
in the neighborhood of the system natural frequency. The mean-square
responses obtained by the proposed approach are compared with those
obtained by Monte Carlo simulation method.

1 Introduction

Systems under harmonic excitation and (or) random excitation have received
a flurry of research effort in the past few decades. Under purely harmonic ex-
citation, it is common to use the technique of averaging method. Over years,
the stochastic averaging method has proved to be a powerful approximate tech-
nique for the prediction of response of weakly nonlinear vibrations subjected
to dampings and random excitations [1-6]. Comprehensive reviews attesting
the success of the stochastic averaging method in random vibration have been
done by Roberts and Spanos [7]. The advantage of this method is that the
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equations of motion of a system are much simplified and the dimensions of
the response coordinates are often reduced, and that the averaged response is
a diffusive Markov process and the method of Fokker-Planck (FP) equation,
whose exact solution is available just for some special cases [8-10], can be ap-
plied. To solve FP equation, several approximate and numerical techniques
have been developed [11-17]. Under purely random excitation, along with the
stochastic averaging method, the stochastic equivalent linearization method is
another popular approach to the approximate analysis. The method consists
of optimally approximating the non- linearities in the given system by lin-
ear models so that the solution of the resulting equivalent system is available.
The original version of this method was first proposed by Caughey [18,19] and
has been developed up to recent years by many authors [20-25]. Engineer-
ing systems, however, are often subjected to combined harmonic and random
excitations, and their exact solutions are known only for a number of special
cases. Therefore, the combination of various methods plays an important role
in order to find responses of such systems. Some methods (or techniques),
such as the combination of the averaging method and Fokker-Planck equation
[8,9], the averaging method and technique of auxiliary function for FP equa-
tion [4,8,26,27], the method of multiple scales and second-order closure method
[28], the averaging with equivalent nonlinearization technique [29], averaging
method, FP equation and the path integration [30-32], the method of harmonic
balance and the method of stochastic averaging [33], the averaging method and
linearization method [34], have been used for the analyses. To our knowledge,
the stochastic Rayleigh system under combined harmonic and random excita-
tions hasnt been investigated so far. In this paper, the approximate technique,
proposed by Anh et al [35], is employed for the Rayleigh with weak nonlinearity
and weak excitations. The key concept of the approach is that the stochastic
averaging the original equation is carried out in Cartesian coordinates and that
the technique of auxiliary function for FP equation. By using the conventional
equivalent linearization method, the nonlinear averaged equations can be re-
placed by linear ones whose solutions can be found exactly by the technique of
auxiliary function.

2 The stochastic Rayleigh system

Let’s consider a Rayleigh oscillator subject to harmonic and random excita-
tions. The equation of motion of the system is of the form

ẍ + ω2x = ε
(
ẋ − γẋ3

)
+ εQ cos νt +

√
εσξ (t) (1)

where ω, ν , γ, Q, σ are constants, ε is a small positive parameter, ξ (t) is
a Gaussian white noise process of unit intensity with the correlation function
Rξ (τ ) = 〈ξ (t) ξ (t + τ )〉 = δ (τ ), where δ (τ ) is the Dirac delta function, and no-
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tation 〈.〉 denotes the mathematical expectation operator. In primary resonant
frequency region, parameters ω and ν have the relation

ω2 − ν2 = εΔ, (2)

where Δ is a detuning parameter.

2.1 The system of algebraic equations for the approxi-
mate stationary probability density function (PDF)
of the system

We seek the solution of Eq. (1) in the form of

x = a1 cos ϕ + a2 sin ϕ, ẋ = −a1ν sinϕ + a2ν cosϕ, ϕ = νt, (3)

where a1 and a2 are slowly varying random processes. Applying Ito rule and
using stochastic averaging method yield

ȧ1 = ε〈K1〉t +
√

εσ

ν
√

2
B1 (t) ,

ȧ2 = ε〈K2〉t +
√

εσ

ν
√

2
B2 (t) ,

(4)

where 〈.〉t is the averaging operator with respect to time t, B1 (t) and B2 (t) are
independent Gaussian white noises, and, with f = −Δx + ẋ − γẋ3 + Q cos νt,

〈K1〉t = −1
ν
〈f sin ϕ〉t =

1
2
a1 +

Δ
2ν

a2 − 3
8
γν2

(
a3
1 + a1a

2
2

)
,

〈K2〉t =
1
ν
〈f cos ϕ〉t = − Δ

2ν
a1 +

1
2
a2 +

Q

2ν
− 3

8
γν2

(
a2
1a2 + a3

2

)
.

(5)

The FP equation, written for the stationary probability density function
(PDF) p (a1, a2) associated with the system (4), has the form

∂

∂a1
(〈K1〉tp) +

∂

∂a2
(〈K2〉tp) =

σ2

4ν2

[
∂2p

∂a2
1

+
∂2p

∂a2
2

]
. (6)

So far, an exact solution of FP equation (6) is only available for a very limited
number of problems; nevertheless, if functions 〈K1〉t, 〈K2〉t are linear functions
then Eq. (6) can be solved exactly by the technique of auxiliary function [10].
Further, it is seen that the transformation (3) makes the drift coefficients 〈K1〉t,
〈K2〉t given in (5) be polynomials in a1 and a2 which give an advantageous
context to apply the equivalent linearization method. Thus, the method of
linearization is employed here. Following this method, the functions 〈K1〉t,
〈K2〉t in (6) are replaced by linear functions Hi, i = 1, 2 given by

H1 (a1, a2) = α1a1 + β1a2 + λ1,

H2 (a1, a2) = α2a1 + β2a2 + λ2.
(7)
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where
α1 =

1
2

+ η11, β1 =
Δ
2ν

+ η12, λ1 = η13,

α2 = − Δ
2ν

+ η21, β2 =
1
2

+ η22, λ2 =
Q

2ν
+ η23.

(8)

There are some criteria for determining the coefficients αi, βi, λi. The most
extensively used criterion is the mean square error criterion which requires
that the mean square of errors be minimum [18]. Errors between the nonlinear
functions 〈Ki〉t and the linear functions Hi, i = 1, 2 are

ei = 〈Ki〉t − (αia1 + βia2 + λi) , i = 1, 2. (9)

So, the mean square error criterion leads to〈
e2
i

〉 → min
αi,βi,λi

, i = 1, 2. (10)

From
∂

∂αi

〈
e2
i

〉
= 0,

∂

∂βi

〈
e2
i

〉
= 0,

∂

∂λi

〈
e2
i

〉
= 0, i = 1, 2, (11)

it follows that

〈a1〈K1〉t〉 −
〈
a2
1

〉
α1 − 〈a1a2〉β1 − 〈a1〉λ1 = 0,

〈a2〈K1〉t〉 − 〈a1a2〉α1 −
〈
a2
2

〉
β1 − 〈a2〉λ1 = 0,

〈〈K1〉t〉 − 〈a1〉α1 − 〈a2〉β1 − λ1 = 0,

〈a1〈K2〉t〉 −
〈
a2
1

〉
α2 − 〈a1a2〉β2 − 〈a1〉λ2 = 0,

〈a2〈K2〉t〉 − 〈a1a2〉α2 −
〈
a2
2

〉
β2 − 〈a2〉λ2 = 0,

〈〈K2〉t〉 − 〈a1〉α2 − 〈a2〉β2 − λ2 = 0.

(12)

The relations (12), solved with respect to αi, βi, λi, then, from (8) reads

η11 = −3γν2

8

(
3σ2

a1
+ 3〈a1〉2 + σ2

a2
+ 〈a2〉2

)
, η12 = −3γν2

4
(〈a1〉 〈a2〉 + ka1a2) ,

η13 =
3γν2

4

(
〈a1〉2 + 〈a2〉2

)
〈a1〉 , η21 = −3γν2

4
(〈a1〉 〈a2〉 + ka1a2) ,

η22 = −3γν2

8

(
σ2

a1
+ 〈a1〉2 + 3σ2

a2
+ 3〈a2〉2

)
, η23 =

3γν2

4

(
〈a1〉2 + 〈a2〉2

)
〈a2〉 .

(13)
Furthermore, if the system (4) is linear and under Gaussian process excitation,
one gets that a1 and a2 are jointly Gaussian. Thus, all higher moments of a1 and
a2 in (12) and (13) can be expressed in terms of the first and second moments
of a1 and a2 by below properties of a Gaussian random vector �X = (a1, a2)〈
an+1

i

〉
= 〈ai〉 〈an

i 〉 + nσ2
ai

〈
an−1

i

〉
,

〈aia
n1
1 an2

2 〉 = 〈ai〉 〈an1
1 an2

2 〉 + n1kaia1

〈
an1−1
1 an2

2

〉
+ n2kaia2

〈
an1
1 an2−1

2

〉
, i = 1, 2.

(14)
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Here σ2
ai

is a variance of ai, ka1a2 denotes a covariance of a1 and a2, and n,n1

and n2 = 0, 1, 2, ... Thus, the relation (12) results in six algebraic equations for
eleven unknowns: αi, βi, λi(i = 1, 2), 〈a1〉 , 〈a2〉 , σ2

a1
, σ2

a2
, ka1a2 . To close the

system (12), more relations of the unknowns are needed. It is noted that the
FP equation below written for the stationary PDF p (a1, a2) associated with
the system (4) has the following form

∂

∂a1
(H1p) +

∂

∂a2
(H2p) =

σ2

4ν2

[
∂2p

∂a2
1

+
∂2p

∂a2
2

]
(15)

In order to integrate Eq.(6) in which the functions 〈K1〉t, 〈K2〉t are replaced by
linear functions Hi, i = 1, 2(7), we employ the technique of auxiliary function
[10] with the auxiliary function u (a1, a2) = u0 = const (in case of α1 +β2 �= 0)
as follows

u0 =
σ2

4ν2

(α2 − β1)
α1 + β2

(16)

Then the stationary PDF p (a1, a2) can be found in the form of

p (a1, a2) = C exp
{−τ1a

2
1 − τ2a

2
2 + τ3a1a2 + τ4a1 + τ5a2

}
(17)

where

τ1 = − 2ν2 (α1 + β2)

σ2
[
(α2 − β1)

2 + (α1 + β2)
2
] [α1 (α1 + β2) + α2 (α2 − β1)] ,

τ2 = − 2ν2 (α1 + β2)

σ2
[
(α2 − β1)

2 + (α1 + β2)
2
] [(α1 + β2)β2 + (−α2 + β1)β1] ,

τ3 =
4ν2 (α1 + β2)

σ2
[
(α2 − β1)

2 + (α1 + β2)
2
] (α1β1 + α2β2) ,

τ4 =
4ν2 (α1 + β2)

σ2
[
(α2 − β1)

2 + (α1 + β2)
2
] [λ1 (α1 + β2) + λ2 (α2 − β1)] ,

τ5 =
4ν2 (α1 + β2)

σ2
[
(α2 − β1)

2 + (α1 + β2)
2
] [λ1 (−α2 + β1) + λ2 (α1 + β2)] .

(18)

Here, because Eq. (15) is associated with a linear system under Gaussian white
noise, the coefficients τ1 and τ2 are positive so that the PDF p (a1, a2) (17) has
a finite integral. It is noted that, from the stationary PDF (17), the moments
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〈a1〉 , 〈a2〉 , σ2
a1

, σ2
a2

, ka1a2 can be derived in terms of τi, i = 1, 5 as

〈a1〉 =
2τ2τ4 + τ3τ5

4τ1τ2 − τ2
3

,

〈a2〉 =
2τ1τ5 + τ3τ4

4τ1τ2 − τ2
3

,

σ2
a1

=
2τ2

4τ1τ2 − τ2
3

,

σ2
a2

=
2τ1

4τ1τ2 − τ2
3

,

ka1a2 =
τ3

4τ1τ2 − τ2
3

(19)

Thus, from the stationary PDF (17), the moments 〈a1〉 , 〈a2〉 , σ2
a1

, σ2
a2

, ka1a2

can be derived in terms of αi, βi, λi by the relations (18) and (19). And then,
the relations (12), (18) and (19) give us a closed system of eleven equations for
eleven unknowns αi, βi, λi(i = 1, 2), 〈a1〉 , 〈a2〉 , σ2

a1
, σ2

a2
, ka1a2 . After being

found by solving the system (12), (18) and (19), the values of the lineariza-
tion coefficients αi, βi, λi are substituted into (17) and (18) to obtain the
approximate stationary PDF in a1 and a2 of Eq. (1).

2.2 The expression of the Rayleigh’s response

Taking mathematical expectation both sides of Eq. (3) gives

〈x (t)〉 = 〈a1〉 cos νt + 〈a2〉 sin νt. (20)

Moreover, by squaring both sides of the first equation in (3) and then taking
mathematical expectation, one obtains〈

x2 (t)
〉

=
〈
a2
1

〉
cos2νt +

〈
a2
2

〉
sin2νt + 〈a1a2〉 sin 2νt. (21)

It is seen from Eq. (20) and Eq. (21) that expectation of x (t) and x (t) are
periodic in time t. From the expression of PDF (17) and the translation (3),
the joint PDF of x and ẋ can be written as

p̄(x, ẋ, t) =
C

ν
exp

{
−τ1

(
x cos νt− ẋ

ν
sin νt

)2

− τ2

(
x sin νt +

ẋ

ν
cos νt

)2

+

+ τ3

(
x cos νt− ẋ

ν
sin νt

) (
x sin νt +

ẋ

ν
cos νt

)
+

τ4

(
x cos νt− ẋ

ν
sin νt

)
+ τ5

(
x sinνt +

ẋ

ν
cos νt

)}
. (22)
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From Eq. (22), one gets the marginal PDF of x as

p̄ (x, t) =

∞∫
−∞

p̄ (x, ẋ, t) dẋ (23)

It is seen from (17), (22) and (23) that the joint PDF of x and ẋ and the
marginal PDF of x depend on time t, although two variables a1 and a2 are
described in a stationary joint PDF. Then taking time-averaging Eq. (21)
yields

〈〈
x2 (t)

〉〉
t
=

1
2π

2π∫
0

〈
x2 (t)

〉
d (νt)

=
1
2

(〈
a2
1

〉
+

〈
a2
2

〉)
=

1
2

(
〈a1〉2 + σ2

a1
+ 〈a2〉2 + σ2

a2

)
. (24)

Substituting (19) into (24) and reducing the obtained result yield the time-
averaging of mean square response to be

〈〈
x2 (t)

〉〉
t
=

(2τ2τ4 + τ3τ5)
2 + (2τ1τ5 + τ3τ4)

2

2(4τ1τ2 − τ2
3 )2

+
τ1 + τ2

4τ1τ2 − τ2
3

, (25)

where τi, i = 1, 5 are given by (18). It is noted from (25) that the approximate
time-averaging value of mean square response of the oscillator is calculated al-
gebraically. In Table 1, time-averaging values of mean-square response of the
system is performed for computation with various values of the parameterσ2 .
In order to check the accuracy of the present technique, the various values of
the response of the equation considered

〈
x2

〉
present

obtained by the proposed
technique are compared to the numerical simulation results versus the particu-
lar parameter. The numerical simulation of the mean square response, denoted
by

〈
x2

〉
sim

, is obtained by 10,000-realization Monte Carlo simulation. The
system parameters are chosen to be ω = 1, Q = 5, γ = 1, σ2 = 0.1, ε = 0.1,
ν = 1.01. It is seen from Table 1 that the proposed technique gives a good
prediction. With the same values for system parameters, Figure 1 gives us a
plot of the marginal PDF p̄ (x, t) at t = 298.

Table 1. The error between the simulation result and approximate values of
the time-averaging of mean square response

〈
x2 (t)

〉
versus the parameter σ2(

ω = 1, Q = 5, γ = 1, σ2 = 0.1, ε = 0.1, ν = 1.01
)
.
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σ2
〈
x2

〉
sim

〈
x2

〉
present

Err (%)
0.1 2.1662 2.1923 1.2
1 2.1714 2.1846 0.61
2 2.1789 2.1731 0.27
3 2.1899 2.1600 1.36
4 2.2017 2.1461 2.53
5 2.2185 2.1322 3.89

Figure 1: The PDF of x at t = 298 with ω = 1, Q = 5, γ = 1, σ2 = 0.1, ε =
0.1, nu = 1.01.

3 Summary and conclusions

The paper shows that Rayleigh’s responses can be found from the system of
algebraic equations. The main idea of the technique is summarized as follows.
First, the stochastic averaging of the equation is carried out in Cartesian coor-
dinates (a1, a2) by the transformation (3). The drift coefficients of the averaged
equations in the system (6) then are polynomial forms in a1 and a2 which give
an advantageous context to apply stochastic equivalent linearization method.
The linearization coefficients are determined by a closed system. The FP equa-
tion associated with the equivalent linearized system can be solved exactly by
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the technique of auxiliary function. The proposed technique has been applied
to Rayleigh and Duffing oscillators under periodic and random excitations. It
is found from these applications that the approximate stationary solutions and
simulation results agree quite well. The procedure of this technique can be
performed in five steps:

- Step 1: Stochastic averaging method in Cartesian coordinates.
- Step 2: Equivalent linearization method to nonlinear FP.
- Step 3: Get the solution of the linear FP by technique of auxiliary function.
- Step 4: Find the approximate stationary PDF of the system from the

system of algebraic equations.
- Step 5: Get the approximate responses values.
When using this technique to study an arbitrary nonlinear system, a ques-

tion about the accuracy of the technique may arise. However, this can be solved
if advanced methods of averaging and equivalent linearization are used. This
could be explored in future studies.
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