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Abstract

The aim of this paper is to study the class of A-constacyclic codes of
Fgm [u] _

length 2-5° over the finite commutative chain ring Rs = ) = Fym +

uFsm + u?Fsm, for all units A of R that have the form A = Ag + u?Aa,
where Ao, Ay € Fsm, Ag#0, A2 #0. The algebraic structures and duals
of all A-constacyclic codes of length 2 - 5° over R3 are established.

1. Introduction

The classes of cyclic and negacyclic codes in particular, and constacyclic codes
in general, play a very significant role in the theory of error-correcting codes.
Let F be a finite field of characteristic p and A be a nonzero element of F.
A-constacyclic codes of length n over F are classified as the ideals (g(z)) of the
quotient ring F[z]/ (z™ — A), where the generator polynomial g(x) is the unique
monic polynimial of minimum degree in the code, which is a divisor of ™ — A.

In fact, cyclic codes are the most studied of all codes. Many well known
codes, such as BCH, Kerdock, Golay, Reed-Muller, Preparata, Justesen, and
binary Hamming codes, are either cyclic codes or constructed from cyclic codes.
Cyclic codes over finite fields were first studied in the late 1950s by Prange [33],
while negacyclic codes over finite fields were initiated by Berlekamp in the late
1960s [4], [5]. The case when the code length n is divisible by the characteristic
p of the field yields the so-called repeated-root codes, which were first studied
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since 1967 by Berman [6], and then in the 1970s and 1980s by several authors
such as Massey et al. [28], Falkner et al. [23], Roth and Seroussi [38]. However,
repeated-root codes were investigated in the most generality in the 1990’s by
Castagnoli et al. [10], and van Lint [42], where they showed that repeated-root
cyclic codes have a concatenated construction, and are asymptotically bad.
Nevertheless, such codes are optimal in a few cases, that motivates researchers
to further study this class of codes.

After the realization in the 1990’s [9, 24, 30] by Nechaev and Hammons et
al., codes over Z, in particular, and codes over finite rings in general, has
developed rapidly in recent decade years. Constacyclic codes over a finite
commutative chain ring have been studied by many authors (see, for example,
[1], [7], [31], and [39]). The structure of constacyclic codes is also investigated
over a special family of finite chain rings of the form Fym + uF,~. For example,
the structure of ]ii[;‘] is interesting, because this ring lies between F4 and Z,4 in
the sense that it is additively analogous to Fy, and multiplicatively analogous

to Z4. Codes over ]ii[:)] have been extensively studied by many researchers,

whose work includes cyclic and self-dual codes [2], decoding of cyclic codes [3],
Type II codes [20], duadic codes [27], repeated-root constacyclic codes [13].

2. Preliminaries

Let R be a finite commutative ring. An ideal I of R is called principal if it is
generated by one element. A ring R is a principal ideal ring if its ideals are
principal. R is called a local ring if R has a unique maximal ideal. Furthermore,
a ring R is called a chain ring if the set of all ideals of R is a chain under set-
theoretic inclusion. The following equivalent conditions are well-known for the
class of finite commutative chain rings (cf. [18, Proposition 2.1]).

The following equivalent conditions are well-known for the class of finite
commutative chain rings.

Proposition 2.1. (cf. [18, Proposition 2.1]) For a finite commutative ring R
the following conditions are equivalent:

(i) R is a local ring and the mazimal ideal M of R is principal;

(i) R is a local principal ideal ring;

(#ii) R is a chain ring.

The following result is a well-known fact about finite commutative chain
rings.

Proposition 2.2. Let R be a finite commutative chain ring, with mazimal
ideal M = {(a), and let t be the nilpotency a. Then
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(i) For some prime p and positive integers k,l(k > 1),|R| = p*,|R| = p', and
the characteristic of R and R are powers of p; -
(ii) For i =0,1,...,t,|{a®)| = |R|'*"%. In particular, |R| = |R|!, i.e., k = It.

Given n-tuples = = (zo, %1, .-, Zn-1),¥ = (Y0,Y1,---,Yn—1) € R", their
inner product or dot product is defined in the usual way:

Ty =xoYo +T1Yy1 + -+ Tn-1Yn—1,

evaluated in R. Two words x,y are called orthogonal if -y = 0. For a linear
code C over R, its dual code C* is the set of n-tuples over R that are orthogonal
to all codewords of C, i.e.,

Ct={z|z-y=0VyecC}

A code C is said to be self-orthogonal if C C C*, and it is said to be self-dual
if C = C*. The following result is appeared in [18].

Proposition 2.3. Let R be a finite chain ring of size p®. The number of
codewords in any linear code C of length n over R is pF, for some integer
k, 0 < k < an. Moreover, the dual code C+ has p®*~* codewords, so that
C]-|C*H = |RI™

Given an n-tuple (zo, z1, ..., Zn—1) € R™, the cyclic shift 7 and negashift v
on R" are defined as usual, i.e.,

T(x0, 1, -+ s Tn—1) = (Tn-1,%0, 1, "+ , Tn—2),

and
l/(xo, T, - - .,.13”_1) = (—xn_l, Loy L1, ,xn_g).

A code C is called cyclic if 7(C) = C, and C'is called negacyclic if v(C) = C.
More generally, if A is a unit of the ring R, then the A-constacyclic (A-twisted)
shift T, on R™ is the shift

A0, X1,y oy T1) = (Ap—1, T, X1, ¢ 5 T—2),

and a code C' is said to be A-constacyclic if T\ (C) = C, i.e., if C is closed under
the A-constacyclic shift 7). From this definition, when A = 1, A-constacyclic
codes are cyclic codes, and when A\ = —1, A\-constacyclic codes are just nega-
cyclic codes.

Each codeword ¢ = (¢, ¢1, - .., Cn—1) is customarily identified with its poly-
nomial representation c¢(z) = co + c1x + - -+ + ¢, 12" "L, and the code C' is in

turn identified with the set of all polynomial representations of its codewords.
Then in the ring %, zc(x) corresponds to a A-constacyclic shift of ¢(x).

From this, the following fact is straightforward:
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Proposition 2.4. A linear code C of length n is A\-constacyclic over R if and

only if C is an ideal of <£[‘f})\>.

We knew that the dual of a cyclic code is a cyclic code, and the dual of a
negacyclic code is a negacyclic code. In general, the dual of a A-constacyclic
code is a A~ 1-constacyclic code. (see, for example, [14], [16]).

The following result is also a fact appeared in [14].

Proposition 2.5. Let R be a finite commutative Ting, A be a unit of R and

a(x) =ag+ a1+ -+ an_12" L bx)=by+brx+--+b, 12"t € R[z].

Then a(x)b(x) = 0 in <£[‘f])\> if and only if (ap,a1,...,an—1) is orthogonal to
(bp_1,bn_2,...,bg) and all its \~*-constacyclic shifts.

For a nonempty subset S of the ring R, the annihilator of S, denoted by
ann(S), is the set

ann(S) = {f| fg =0, for all g € S}.

Then ann(S) is an ideal of R.

For a polynomial f of degree k, the polynomial z* f(z 1) is called a recipro-
cal polynomial of polynomial f. The reciprocal polynomial of f will be denoted
by f*. Suppose that f(z) = ag + a17 + - - + ag_12* ! + apx®. Then f*(z) =
tFlag+are 4 Fap 1z F D papeF) = ap +ap_1x+- -+ arzF 1 Fagzk.
Note that (f*)* = f if and only if the constant term of f is nonzero, if and only
if deg(f) = deg(f*). We denote A* = {f*(x) | f(z) € A}. Tt is easy to see that
if A is an ideal, then A* is also an ideal. Since the dual of a A-constacyclic code
is a A~ -constacyclic code, C* is a A~ !-constacyclic codes of length n over R,
and hence, C* is an ideal of the ring %, by Proposition 2.4. It is clear

R[x]
zn—A—1)"

we can conclude that g(z) € ann*(C) if and only if g(x) = f*(x) for some
f(z) € ann(C), if and only if g(x) € C+. Then, we have a following result.

that ann*(C) is also an ideal of Therefore, applying Proposition 2.5,

Proposition 2.6. Let R be a finite commutative ring, and A be a unit of R.
Assume that C is a A-constacyclic code of length n over R. Then the dual C*
of C is ann*(C).
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3. A+ u?Ay-constacyclic codes of length 2 - 5° over
F5m + 'UJIF5m —+ U2F5m

In this paper, we study A +u2As-constacyclic codes of length 2 -5° over Fgm -+
uFsm +u?Fsm and its dual, where A = Ag+u?As is a unit of Fsm +uFsm4+u?Fsm.
By Proposition 2.4, we know that these codes are ideals of the ring

Ralz]

Sa(s,\) = o)

We can see that (Ag + u?A2)®" = A" + u?°"A3" = AJ" = Ao. This
follows that A"A;' = 1. Hence, A=! = AS"~1A;'. We have A"~ =
(Mg + u?Ay)®" 1 = Agm_l + u?Aa(5™ — 1) = 1 + u?Ay(5™ — 1), implying
that A= = Ayt + u?A).

If the unit A is a square in Fsm + uFsm + ©2Fsm, i.e., there exists a unit
B € Fym + uF5m + u?F5m such that A = $2. Then we have

2 A= -8 = (=" +B)(=" - B).
Applying the Chinese remainder theorem, we can see that

Rg [ZC] Rg [ZC]
(@ +p) (@ =)

This follows that all ideals of S3(s, A) are of the form A @ B, where A and

7?9 Uﬂ) and 7?3[ ]ﬂ>’ respectively, i.e., they are —3- and (-
constacyclic codes of length 5g over R3. Hence, if A is a square in R3, a
Ag + u?Ay-constacyclic code of length 2 - 5° over R3 is expressed as a direct

sum of C'y and C_:

83(8, A) =

B are ideals of @

C=C,aC_,

where C; and C_ are ideals of = ”Uﬂ) and <R3[ ]ﬂ>’

cation, detailed structure, and number of codewords of o and —a constacyclic
codes length 5% were investigated in [40]. Thus, when A is a square in Rz, we
can obtain A-constacyclic codes C of length 2 - 5% over R3 from that of the
direct summands Cy and C_ (cf. [40]). Hence, we can prove that the dual
code C*+ of C is also a direct sum of the dual codes of the direct summand Ci
and C*.

Theorem 3.1. Let the unit A = 32 € Fym +uFsm +u?Fsm, and C = CL & C_

be a constacyclic code of length 2 -5° over Fsm + uFsm + u?Fsm, where C, C_
[=] Rsla]

r’g+ﬂ> 7 (257 —B)’

respectively. The classifi-

are ideals of respectively. Then

Cct=ctect
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In particular, C is a self-dual constacyclic code of length 2-5° over Fsm +ulF5m +
u?Fsm if and only if Cy, C_ are self-dual —B3-constacyclic code and self-dual
B-constacyclic code of length 5° over Fsm + uFsm + u?Fsm, respectively.

Proof. It is easy to verify that Ci @ C+ C Ct. On the other hand,

Rs® |Rs|?” R[> |R3|>
(Ji@cf:cl-cf:' : = = =|Ct.
L o i TN M T Aol R TeT M
This implies that C+ = Ci ®Ct. U

Therefore, we only need to concentrate on the main case where A is not a
square in Fsm 4 uF5m + u?F5m. We first start by characterizing this condition.

Proposition 3.2. Let A = Ag 4+ u?Ay, Ag, Ay € Fsm, Ag#0, Ay #0, be a unit
of Ag +u?Ay of Fsm + ulFsm 4+ u?Fsm. Then A is not a square if and only if Ag
18 not a square.

Proof.  Suppose that A = Ay, we consider (Aj + uA)] + u?A})?, where
A} € Fpm. Assume that (Aj +uAj +u?A%)? = Ag +u?As. Then we have AF +
2AL A+ 2AL A, + uP A2 + 2uP AL ALTAZ = Ag + u?Ay. Comparing coefficients,
we have

Ao = AR, 200N = 0, Ay = A+ 2A0AS.

Since A} # 0, we must have A} = 0. By hypothesis, Aj ' exists, we can
compute Ay = 27 1AL As.

From this, we can prove the following result.

Proposition 3.3. Any nonzero linear polynomial cx +d € Fsm [x] is invertible
in S3(s, A).

Proof. In Ss(s,A), we have
(z+d)> (z—d)® = (a® —d?)* =2¥" —d* = (Ao — d®®") + u’As.

Since Ag is not a square in Fsm, Ag — d?" is invertible in Fsm. This follows
that (Ag — d?®") + u?Ay is invertible in Sz(s, A). Thus,
(z4+d) "= (x+d)°> Yo —d)® (Ao — d*>° +uAy) "L
Therefore, for any ¢# 0 in Fgm,
(cx+d) P =c o+ td) = (@+c ') Ha—c1d)5 (Mg — ™25 d25° 4 u2A,)~ 1.0

Since Ag € Fsm, we have Agtm = Ay, for any positive integer t. By the
Division Algorithm, there exist nonnegative integers aq, «, such that s =

agm+ap, and 0 < a, < m—1. Let ag = A" = A5™*". Then
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ay = Ag(aqﬂ)m = Ag. The following provides the key to prove that the ring
Ss(s, A) is a chain ring.

Lemma 3.4. In S3(s, A), we have (> — ag)®") = (u). In particular, x> — oy
is nilpotent with nipotency index 3 - 5°.

Proof.  The results follow from the fact that in S3(s,A), (22 — ag)®” =
.732'58 — AO = ’U,Al + U,QAQ. O

Any element f(x) of S3(s,A) can be expressed as a polynomial of degree
up to 2-5% — 1 of R3[z], and so f(z) = fi(z) + ufa(z) + u?f3(x), where
fi(x), f2(x), f3(z) are polynomials of degrees up to 2-5° — 1 of Fsm[z]. Thus,
f(x) can be uniquely represented as

5°—1 5%5—1
f(x) = Z (Coix + d()l')(xQ — Ot())i —+u Z (Cux + du)(xQ — Ot())i
=0 1=0
5°—1 ,
+ ’(1,2 Z (Cgﬂ? + dgl')(xQ — Ot())l
=0
5%—1
= (coox + doo) + (z° — ) Z (coix + doi)(2® — ag)' ™"
1=1
5°—1 5%5—1
+u Z (a1 + bu)(xQ —ap)' + u? Z (csix + dgl')(xQ — )’
=0 =0

where co;, dii, coi, d1; € Fsm. By Lemma 3.4, u € (22 — ap), and so f(z) can

be written as

f(@) = (coow + doo) + (¢ — ap)g(x).
Thus, f(x) is non-invertible if and only if cog = doo = 0, i.e., f(z) € (2% — ap).
It means that (x2—qq) forms the set of all non-invertible elements of R,,. Thus,
S3(s, A) is a local ring with maximal ideal (2% — o), hence, by Proposition 2.1,
Ss(s,A) is a chain ring. We summarize the discussion above in the following
theorem.

Theorem 3.5. The ring S3(s, A) is a chain ring with mazimal ideal (x? — o),
whose ideals are

S3(s,8) = (1) 2 (2% —ag) 2 -+ 2 ((@? = ap)*¥ ™) 2 ((@? — ap)*™") = (0).

From Theorem 3.5, we now can give the structure of Ag+u2Ag-constacyclic
codes of length 2 - 5° over R3, and their sizes as follows.

Theorem 3.6. A0—|—u2A2—con3tacyclic codes of length 2-5° over R3 are precisely
the ideals {(z? — ag)?) C R3, where 0 < i < 3-5°. Each Ag+u?Ay-constacyclic
code (2 — ap)?) has 5235 =) codewords.
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For a Ag + u?As-constacyclic code C' = {(2? — ag)?) C R3 of length 2 - 5°
over R3, by Proposition 2.5 and Proposition 2.10, its dual C* is a Ag + u?Ao-
constacyclic code of length 2 - 5° over R3. This means

- Rslz]
1 1 3
C™ CS3(s,A77) = @rs A1)
Hence, Lemma 3.4 and Theorem 3.5 are applicable for C+ and Sz(s, A™1).
Therefore, similar to the case of S3(s,A), we can prove that S3(s, A7) is a
chain ring.

Theorem 3.7. The ring S3(s, A=1) is a chain ring with mazimal ideal (x? —
agt), whose ideals are

Ss(s, A1) = (1) 2 (#®=ag ") 2 -+ 2 ((a%—ag ) 7") 2 ((a%—ag)**) = (0).
In other words, A~'-constacyclic codes of length 2-5° over Rz are precisely the
ideals (2% — ag )’y C S3(s, A™1), where 0 < i < 3-5°%. Each A~!-constacyclic
code ((x? —ag')?) C S3(s, A™1) has 5™ codewords.

Applying Theorem 3.7, we now can describe the duals of A-constacyclic
codes in the following corollary.

Corollary 3.8. Let C be a A-constacyclic code of length 2 - 5° over R3. Then

C = (2% — ap)?) C R3, for some i € {0,1,...,3-5°}, and its dual C* is the
A~1-constacyclic code

oL — <(x2 _ O[81)355—1> C Rs.

Proof. Let C = ((2%2—ag)’) C S3(s, A) be a A-constacyclic code of length 2-5°
over R3. Then, C* is an ideal of S3(s, A~"). By Theorem 3.7, |C| = 52m(3:5" 1),
and hence, by Proposition 2.3,

Ra|25° 56m5° )
|CL| _ | 3| _ = 52m1.
IC]| p2m(35°=)
From Theorem 3.7, we have Ct = ((22 — ag")>" %) C S3(s, A71). O
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