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Abstract

The aim of this paper is to study the class of Λ-constacyclic codes of
length 2 ·5s over the finite commutative chain ring R3 = F5m [u]

〈u3〉 = F5m +

uF5m + u2F5m , for all units Λ of R3 that have the form Λ = Λ0 + u2Λ2,
where Λ0, Λ2 ∈ F5m , Λ0 �= 0, Λ2 �=0. The algebraic structures and duals
of all Λ-constacyclic codes of length 2 · 5s over R3 are established.

1. Introduction

The classes of cyclic and negacyclic codes in particular, and constacyclic codes
in general, play a very significant role in the theory of error-correcting codes.
Let F be a finite field of characteristic p and λ be a nonzero element of F.
λ-constacyclic codes of length n over F are classified as the ideals 〈g(x)〉 of the
quotient ring F[x]/ 〈xn − λ〉, where the generator polynomial g(x) is the unique
monic polynimial of minimum degree in the code, which is a divisor of xn − λ.

In fact, cyclic codes are the most studied of all codes. Many well known
codes, such as BCH, Kerdock, Golay, Reed-Muller, Preparata, Justesen, and
binary Hamming codes, are either cyclic codes or constructed from cyclic codes.
Cyclic codes over finite fields were first studied in the late 1950s by Prange [33],
while negacyclic codes over finite fields were initiated by Berlekamp in the late
1960s [4], [5]. The case when the code length n is divisible by the characteristic
p of the field yields the so-called repeated-root codes, which were first studied
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since 1967 by Berman [6], and then in the 1970s and 1980s by several authors
such as Massey et al. [28], Falkner et al. [23], Roth and Seroussi [38]. However,
repeated-root codes were investigated in the most generality in the 1990’s by
Castagnoli et al. [10], and van Lint [42], where they showed that repeated-root
cyclic codes have a concatenated construction, and are asymptotically bad.
Nevertheless, such codes are optimal in a few cases, that motivates researchers
to further study this class of codes.

After the realization in the 1990’s [9, 24, 30] by Nechaev and Hammons et
al., codes over Z4 in particular, and codes over finite rings in general, has
developed rapidly in recent decade years. Constacyclic codes over a finite
commutative chain ring have been studied by many authors (see, for example,
[1], [7], [31], and [39]). The structure of constacyclic codes is also investigated
over a special family of finite chain rings of the form Fpm +uFpm . For example,
the structure of F2[u]

〈u2〉 is interesting, because this ring lies between F4 and Z4 in
the sense that it is additively analogous to F4, and multiplicatively analogous
to Z4. Codes over F2[u]

〈u2〉 have been extensively studied by many researchers,
whose work includes cyclic and self-dual codes [2], decoding of cyclic codes [3],
Type II codes [20], duadic codes [27], repeated-root constacyclic codes [13].

2. Preliminaries

Let R be a finite commutative ring. An ideal I of R is called principal if it is
generated by one element. A ring R is a principal ideal ring if its ideals are
principal. R is called a local ring if R has a unique maximal ideal. Furthermore,
a ring R is called a chain ring if the set of all ideals of R is a chain under set-
theoretic inclusion. The following equivalent conditions are well-known for the
class of finite commutative chain rings (cf. [18, Proposition 2.1]).

The following equivalent conditions are well-known for the class of finite
commutative chain rings.

Proposition 2.1. (cf. [18, Proposition 2.1]) For a finite commutative ring R
the following conditions are equivalent:
(i) R is a local ring and the maximal ideal M of R is principal;
(ii) R is a local principal ideal ring;
(iii) R is a chain ring.

The following result is a well-known fact about finite commutative chain
rings.

Proposition 2.2. Let R be a finite commutative chain ring, with maximal
ideal M = 〈a〉, and let t be the nilpotency a. Then
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(i) For some prime p and positive integers k, l(k ≥ l), |R| = pk, |R̄| = pl, and
the characteristic of R and R̄ are powers of p;
(ii) For i = 0, 1, . . . , t, |〈ai〉| = |R̄|t−i. In particular, |R| = |R̄|t, i.e., k = lt.

Given n-tuples x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn, their
inner product or dot product is defined in the usual way:

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1,

evaluated in R. Two words x, y are called orthogonal if x · y = 0. For a linear
code C over R, its dual code C⊥ is the set of n-tuples over R that are orthogonal
to all codewords of C, i.e.,

C⊥ = {x | x · y = 0, ∀y ∈ C}.
A code C is said to be self-orthogonal if C ⊆ C⊥, and it is said to be self-dual
if C = C⊥. The following result is appeared in [18].

Proposition 2.3. Let R be a finite chain ring of size pα. The number of
codewords in any linear code C of length n over R is pk, for some integer
k, 0 ≤ k ≤ αn. Moreover, the dual code C⊥ has pαn−k codewords, so that
|C| · |C⊥| = |R|n.

Given an n-tuple (x0, x1, . . . , xn−1) ∈ Rn, the cyclic shift τ and negashift ν
on Rn are defined as usual, i.e.,

τ (x0, x1, . . . , xn−1) = (xn−1, x0, x1, · · · , xn−2),

and
ν(x0, x1, . . . , xn−1) = (−xn−1, x0, x1, · · · , xn−2).

A code C is called cyclic if τ (C) = C, and C is called negacyclic if ν(C) = C.
More generally, if λ is a unit of the ring R, then the λ-constacyclic (λ-twisted)
shift τλ on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, · · · , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C, i.e., if C is closed under
the λ-constacyclic shift τλ. From this definition, when λ = 1, λ-constacyclic
codes are cyclic codes, and when λ = −1, λ-constacyclic codes are just nega-
cyclic codes.

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its poly-
nomial representation c(x) = c0 + c1x + · · ·+ cn−1x

n−1, and the code C is in
turn identified with the set of all polynomial representations of its codewords.
Then in the ring R[x]

〈xn−λ〉 , xc(x) corresponds to a λ-constacyclic shift of c(x).
From this, the following fact is straightforward:
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Proposition 2.4. A linear code C of length n is λ-constacyclic over R if and
only if C is an ideal of R[x]

〈xn−λ〉 .

We knew that the dual of a cyclic code is a cyclic code, and the dual of a
negacyclic code is a negacyclic code. In general, the dual of a λ-constacyclic
code is a λ−1-constacyclic code. (see, for example, [14], [16]).

The following result is also a fact appeared in [14].

Proposition 2.5. Let R be a finite commutative ring, λ be a unit of R and

a(x) = a0 + a1x + · · ·+ an−1x
n−1, b(x) = b0 + b1x + · · ·+ bn−1x

n−1 ∈ R[x].

Then a(x)b(x) = 0 in R[x]
〈xn−λ〉 if and only if (a0, a1, . . . , an−1) is orthogonal to

(bn−1, bn−2, . . . , b0) and all its λ−1-constacyclic shifts.

For a nonempty subset S of the ring R, the annihilator of S, denoted by
ann(S), is the set

ann(S) = {f | fg = 0, for all g ∈ S}.

Then ann(S) is an ideal of R.

For a polynomial f of degree k, the polynomial xkf(x−1) is called a recipro-
cal polynomial of polynomial f. The reciprocal polynomial of f will be denoted
by f∗. Suppose that f(x) = a0 + a1x + · · ·+ ak−1x

k−1 + akxk. Then f∗(x) =
xk(a0 +a1x

−1 + · · ·+ak−1x
−(k−1)+akx−k) = ak +ak−1x+ · · ·+a1x

k−1+a0x
k.

Note that (f∗)∗ = f if and only if the constant term of f is nonzero, if and only
if deg(f) = deg(f∗). We denote A∗ = {f∗(x) | f(x) ∈ A}. It is easy to see that
if A is an ideal, then A∗ is also an ideal. Since the dual of a λ-constacyclic code
is a λ−1-constacyclic code, C⊥ is a λ−1-constacyclic codes of length n over R,
and hence, C⊥ is an ideal of the ring R[x]

〈xn−λ−1〉 , by Proposition 2.4. It is clear

that ann∗(C) is also an ideal of R[x]
〈xn−λ−1〉 . Therefore, applying Proposition 2.5,

we can conclude that g(x) ∈ ann∗(C) if and only if g(x) = f∗(x) for some
f(x) ∈ ann(C), if and only if g(x) ∈ C⊥. Then, we have a following result.

Proposition 2.6. Let R be a finite commutative ring, and λ be a unit of R.
Assume that C is a λ-constacyclic code of length n over R. Then the dual C⊥

of C is ann∗(C).
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3. Λ + u2Λ2-constacyclic codes of length 2 · 5s over

F5m + uF5m + u2F5m

In this paper, we study Λ +u2Λ2-constacyclic codes of length 2 · 5s over F5m +
uF5m+u2F5m and its dual, where Λ = Λ0+u2Λ2 is a unit of F5m +uF5m+u2F5m .
By Proposition 2.4, we know that these codes are ideals of the ring

Sa(s, Λ) =
Ra[x]

〈x2·5s − Λ〉 .

We can see that (Λ0 + u2Λ2)5
m

= Λ5m

0 + u2·5m

Λ5m

2 = Λ5m

0 = Λ0. This
follows that Λ5m

Λ−1
0 = 1. Hence, Λ−1 = Λ5m−1Λ−1

0 . We have Λ5m−1 =
(Λ0 + u2Λ2)5

m−1 = Λ5m−1
0 + u2Λ2(5m − 1) = 1 + u2Λ2(5m − 1), implying

that Λ−1 = Λ−1
0 + u2Λ′

2.

If the unit Λ is a square in F5m + uF5m + u2F5m , i.e., there exists a unit
β ∈ F5m + uF5m + u2F5m such that Λ = β2. Then we have

x2·5s − Λ = x2·5s − β2 = (x5s

+ β)(x5s − β).

Applying the Chinese remainder theorem, we can see that

S3(s, Λ) =
R3[x]

〈x5s + β〉 ⊕
R3[x]

〈x5s − β〉 .

This follows that all ideals of S3(s, Λ) are of the form A ⊕ B, where A and
B are ideals of Ra[x]

〈x5s +β〉 and R3[x]
〈x5s−β〉 , respectively, i.e., they are −β- and β-

constacyclic codes of length 5s over R3. Hence, if Λ is a square in R3, a
Λ0 + u2Λ2-constacyclic code of length 2 · 5s over R3 is expressed as a direct
sum of C+ and C−:

C = C+ ⊕ C−,

where C+ and C− are ideals of R3[x]
〈x5s+β〉 and R3[x]

〈x5s−β〉 , respectively. The classifi-
cation, detailed structure, and number of codewords of α and −α constacyclic
codes length 5k were investigated in [40]. Thus, when Λ is a square in R3, we
can obtain Λ-constacyclic codes C of length 2 · 5s over R3 from that of the
direct summands C+ and C− (cf. [40]). Hence, we can prove that the dual
code C⊥ of C is also a direct sum of the dual codes of the direct summand C⊥

+

and C⊥
− .

Theorem 3.1. Let the unit Λ = β2 ∈ F5m +uF5m +u2F5m, and C = C+⊕C−
be a constacyclic code of length 2 · 5s over F5m +uF5m +u2F5m , where C+, C−
are ideals of R3[x]

〈x5s+β〉 ,
R3[x]

〈x5s−β〉 , respectively. Then

C⊥ = C⊥
+ ⊕ C⊥

− .
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In particular, C is a self-dual constacyclic code of length 2·5s over F5m +uF5m +
u2F5m if and only if C+, C− are self-dual −β-constacyclic code and self-dual
β-constacyclic code of length 5s over F5m + uF5m + u2F5m , respectively.

Proof. It is easy to verify that C⊥
+ ⊕ C⊥

− ⊆ C⊥. On the other hand,

|C⊥
+ ⊕ C⊥

− | = |C⊥
+ | · |C⊥

− | =
|R3|5s

|C+| · |R3|ps

|C−| =
|R3|5s

|C+| · |C−| =
|R3|5s

|C| = |C⊥|.

This implies that C⊥ = C⊥
+ ⊕ C⊥− . �

Therefore, we only need to concentrate on the main case where Λ is not a
square in F5m +uF5m + u2F5m . We first start by characterizing this condition.

Proposition 3.2. Let Λ = Λ0 + u2Λ2, Λ0, Λ2 ∈ F5m , Λ0 
=0, Λ2 
=0, be a unit
of Λ0 +u2Λ2 of F5m +uF5m +u2F5m . Then Λ is not a square if and only if Λ0

is not a square.

Proof. Suppose that Λ′2
0 = Λ0, we consider (Λ′

0 + uΛ′
1 + u2Λ′

2)
2, where

Λ′
i ∈ Fpm . Assume that (Λ′

0 + uΛ′
1 + u2Λ′

2)2 = Λ0 + u2Λ2. Then we have Λ′2
0 +

2Λ′
0Λ′

1u + 2Λ′
0Λ′

2 + u2Λ′2
1 + 2u3Λ′

1Λ′4
2 Λ′2

2 = Λ0 + u2Λ2. Comparing coefficients,
we have

Λ0 = Λ′2
0 , 2Λ′

0Λ
′
1 = 0, Λ2 = Λ′2

1 + 2Λ′
0Λ

′
2.

Since Λ′
0 
= 0, we must have Λ′

1 = 0. By hypothesis, Λ′−1
0 exists, we can

compute Λ′
2 = 2−1Λ′−1

0 Λ2.

From this, we can prove the following result.

Proposition 3.3. Any nonzero linear polynomial cx + d ∈ F5m [x] is invertible
in S3(s, Λ).

Proof. In S3(s, Λ), we have

(x + d)5
s

(x − d)5
s

= (x2 − d2)5
s

= x2·5s − d2·5s

= (Λ0 − d2·5s

) + u2Λ2.

Since Λ0 is not a square in F5m , Λ0 − d2·5s

is invertible in F5m . This follows
that (Λ0 − d2·5s

) + u2Λ2 is invertible in S3(s, Λ). Thus,

(x + d)−1 = (x + d)5
s−1(x − d)5

s

(Λ0 − d2·5s

+ u2Λ2)−1.

Therefore, for any c 
= 0 in F5m ,

(cx + d)−1 = c−1(x + c−1d)−1 = (x + c−1d)5
s−1(x− c−1d)5

s
(Λ0 − c−2·5s

d2·5s
+u2Λ2)−1.�

Since Λ0 ∈ F5m , we have Λ5tm

0 = Λ0, for any positive integer t. By the
Division Algorithm, there exist nonnegative integers αq, αr such that s =
αqm + αr, and 0 ≤ αr ≤ m − 1. Let α0 = Λ5(αq+1)m−s

0 = Λ5m−αr

0 . Then



28 Λ + u2Λ2 -constacyclic codes of length...

α5s

0 = Λ5(αq+1)m

0 = Λ0. The following provides the key to prove that the ring
S3(s, Λ) is a chain ring.

Lemma 3.4. In S3(s, Λ), we have 〈(x2 − α0)5
s〉 = 〈u〉. In particular, x2 − α0

is nilpotent with nipotency index 3 · 5s.

Proof. The results follow from the fact that in S3(s, Λ), (x2 − α0)5
s

=
x2·5s − Λ0 = uΛ1 + u2Λ2. �

Any element f(x) of S3(s, Λ) can be expressed as a polynomial of degree
up to 2 · 5s − 1 of R3[x], and so f(x) = f1(x) + uf2(x) + u2f3(x), where
f1(x), f2(x), f3(x) are polynomials of degrees up to 2 · 5s − 1 of F5m [x]. Thus,
f(x) can be uniquely represented as

f(x) =
5s−1∑
i=0

(c0ix + d0i)(x2 − α0)i + u

5s−1∑
i=0

(c1ix + d1i)(x2 − α0)i

+ u2
5s−1∑
i=0

(c3ix + d3i)(x2 − α0)i

= (c00x + d00) + (x2 − α0)
5s−1∑
i=1

(c0ix + d0i)(x2 − α0)i−1

+ u

5s−1∑
i=0

(a1ix + b1i)(x2 − α0)i + u2
5s−1∑
i=0

(c3ix + d3i)(x2 − α0)i,

where c0i, d1i, c0i, d1i ∈ F5m . By Lemma 3.4, u ∈ 〈x2 − α0〉, and so f(x) can
be written as

f(x) = (c00x + d00) + (x2 − α0)g(x).

Thus, f(x) is non-invertible if and only if c00 = d00 = 0, i.e., f(x) ∈ 〈x2 −α0〉.
It means that 〈x2−α0〉 forms the set of all non-invertible elements of Ra. Thus,
S3(s, Λ) is a local ring with maximal ideal 〈x2−α0〉, hence, by Proposition 2.1,
S3(s, Λ) is a chain ring. We summarize the discussion above in the following
theorem.

Theorem 3.5. The ring S3(s, Λ) is a chain ring with maximal ideal 〈x2−α0〉,
whose ideals are

S3(s, Λ) = 〈1〉 � 〈x2 − α0〉 � · · · � 〈(x2 − α0)3·5
s−1〉 � 〈(x2 − α0)3·5

s〉 = 〈0〉.

From Theorem 3.5, we now can give the structure of Λ0 +u2Λ2-constacyclic
codes of length 2 · 5s over R3, and their sizes as follows.

Theorem 3.6. Λ0+u2Λ2-constacyclic codes of length 2·5s over R3 are precisely
the ideals 〈(x2−α0)i〉 ⊆ R3, where 0 ≤ i ≤ 3 · 5s. Each Λ0 +u2Λ2-constacyclic
code 〈(x2 − α0)i〉 has 52m(3·5s−i) codewords.



N. T. Bac 29

For a Λ0 + u2Λ2-constacyclic code C = 〈(x2 − α0)i〉 ⊆ R3 of length 2 · 5s

over R3, by Proposition 2.5 and Proposition 2.10, its dual C⊥ is a Λ0 + u2Λ2-
constacyclic code of length 2 · 5s over R3. This means

C⊥ ⊆ S3(s, Λ−1) =
R3[x]

〈x2·5s − Λ−1〉 .

Hence, Lemma 3.4 and Theorem 3.5 are applicable for C⊥ and S3(s, Λ−1).
Therefore, similar to the case of S3(s, Λ), we can prove that S3(s, Λ−1) is a
chain ring.

Theorem 3.7. The ring S3(s, Λ−1) is a chain ring with maximal ideal 〈x2 −
α−1

0 〉, whose ideals are

S3(s, Λ−1) = 〈1〉 � 〈x2−α−1
0 〉 � · · · � 〈(x2−α−1

0 )3·5
s−1〉 � 〈(x2−α−1

0 )3·5
s〉 = 〈0〉.

In other words, Λ−1-constacyclic codes of length 2 · 5s over R3 are precisely the
ideals 〈(x2 − α−1

0 )i〉 ⊆ S3(s, Λ−1), where 0 ≤ i ≤ 3 · 5s. Each Λ−1-constacyclic
code 〈(x2 − α−1

0 )i〉 ⊆ S3(s, Λ−1) has 52mi codewords.

Applying Theorem 3.7, we now can describe the duals of Λ-constacyclic
codes in the following corollary.

Corollary 3.8. Let C be a Λ-constacyclic code of length 2 · 5s over R3. Then
C = 〈(x2 − α0)i〉 ⊆ R3, for some i ∈ {0, 1, . . . , 3 · 5s}, and its dual C⊥ is the
Λ−1-constacyclic code

C⊥ =
〈
(x2 − α−1

0 )3·5
s−i

〉
⊆ R3.

Proof. Let C = 〈(x2−α0)i〉 ⊆ S3(s, Λ) be a Λ-constacyclic code of length 2·5s

over R3. Then, C⊥ is an ideal of S3(s, Λ−1). By Theorem 3.7, |C| = 52m(3·5s−i),
and hence, by Proposition 2.3,

|C⊥| =
|R3|2·5s

|C| =
56m5s

p2m(3·5s−i)
= 52mi.

From Theorem 3.7, we have C⊥ =
〈
(x2 − α−1

0 )5
s−i

〉 ⊆ S3(s, Λ−1). �
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[31] G. Norton and A. Sălăgean-Mandache, On the structure of linear cyclic codes over
finite chain rings, Appl. Algebra Engrg. Comm. Comput. 10 (2000), 489–506.

[32] V. Pless and W.C. Huffman, Handbook of coding theory, Elsevier, Amsterdam, 1998.

[33] E. Prange, Cyclic Error-Correcting Codes in Two Symbols, (September 1957), TN-57-
103.

[34] E. Prange, Some cyclic error-correcting codes with simple decoding algorithms, (April
1958), TN-58-156.

[35] E. Prange, The use of coset equivalence in the analysis and decoding of group codes,
(1959), TN-59-164.

[36] E. Prange, An algorithm for factoring xn − 1 over a finite field, (October 1959), TN-
59-175.

[37] M.Y. Rosenbloom and M. A. Tsfasman, Codes for the m-metric, Problems Inf. Trans.
33 (1997), 45-52.

[38] R.M. Roth and G. Seroussi, On cyclic MDS codes of length q over GF(q), IEEE Trans.
Inform. Theory 32 (1986), 284-285.

[39] R. Sobhani, and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring
GR(p2, m) Discrete Applied Mathematics, 157 (2009), 2892-2903.

[40] R. Sobhani, Complete classification of (δ + u2γ)-constacyclic codes of length pk over
Fpm + uFpm + u2

Fpm , FFA, 34 (2015), 123-138.

[41] M.M. Skriganov, On linear codes with large weights simultaneously for the Rosenbloom-
Tsfasman and Hamming metrics, J. of Complexity 23 (2007), 926-936.

[42] J.H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), 343-
345.


