# $\Lambda+u^{2} \Lambda_{2}$ - CONSTACYCLIC CODES OF <br> LENGTH $2 \cdot 5^{s}$ OVER $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$ 

Nguyen Trong Bac<br>Department of Basic Sciences,<br>University of Economics and Business Administration, Thai Nguyen University, Thai Nguyen, Vietnam. e-mail: bacnt2008@gmail.com


#### Abstract

The aim of this paper is to study the class of $\Lambda$-constacyclic codes of length $2 \cdot 5^{s}$ over the finite commutative chain ring $\mathcal{R}_{3}=\frac{\mathbb{F}_{5} m[u]}{\left\langle u^{3}\right\rangle}=\mathbb{F}_{5^{m}}+$ $u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$, for all units $\Lambda$ of $\mathcal{R}_{3}$ that have the form $\Lambda=\Lambda_{0}+u^{2} \Lambda_{2}$, where $\Lambda_{0}, \Lambda_{2} \in \mathbb{F}_{5^{m}}, \Lambda_{0} \neq 0, \Lambda_{2} \neq 0$. The algebraic structures and duals of all $\Lambda$-constacyclic codes of length $2 \cdot 5^{s}$ over $\mathcal{R}_{3}$ are established.


## 1. Introduction

The classes of cyclic and negacyclic codes in particular, and constacyclic codes in general, play a very significant role in the theory of error-correcting codes. Let $\mathbb{F}$ be a finite field of characteristic $p$ and $\lambda$ be a nonzero element of $\mathbb{F}$. $\lambda$-constacyclic codes of length $n$ over $\mathbb{F}$ are classified as the ideals $\langle g(x)\rangle$ of the quotient ring $\mathbb{F}[x] /\left\langle x^{n}-\lambda\right\rangle$, where the generator polynomial $g(x)$ is the unique monic polynimial of minimum degree in the code, which is a divisor of $x^{n}-\lambda$.

In fact, cyclic codes are the most studied of all codes. Many well known codes, such as BCH, Kerdock, Golay, Reed-Muller, Preparata, Justesen, and binary Hamming codes, are either cyclic codes or constructed from cyclic codes. Cyclic codes over finite fields were first studied in the late 1950s by Prange [33], while negacyclic codes over finite fields were initiated by Berlekamp in the late 1960s [4], [5]. The case when the code length $n$ is divisible by the characteristic $p$ of the field yields the so-called repeated-root codes, which were first studied

Key words: Constacyclic codes, dual codes, chain rings.
since 1967 by Berman [6], and then in the 1970s and 1980s by several authors such as Massey et al. [28], Falkner et al. [23], Roth and Seroussi [38]. However, repeated-root codes were investigated in the most generality in the 1990's by Castagnoli et al. [10], and van Lint [42], where they showed that repeated-root cyclic codes have a concatenated construction, and are asymptotically bad. Nevertheless, such codes are optimal in a few cases, that motivates researchers to further study this class of codes.

After the realization in the 1990's [9, 24, 30] by Nechaev and Hammons et al., codes over $\mathbb{Z}_{4}$ in particular, and codes over finite rings in general, has developed rapidly in recent decade years. Constacyclic codes over a finite commutative chain ring have been studied by many authors (see, for example, [1], [7], [31], and [39]). The structure of constacyclic codes is also investigated over a special family of finite chain rings of the form $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$. For example, the structure of $\frac{\mathbb{F}_{2}[u]}{\left\langle u^{2}\right\rangle}$ is interesting, because this ring lies between $\mathbb{F}_{4}$ and $\mathbb{Z}_{4}$ in the sense that it is additively analogous to $\mathbb{F}_{4}$, and multiplicatively analogous to $\mathbb{Z}_{4}$. Codes over $\frac{\mathbb{F}_{2}[u]}{\left\langle u^{2}\right\rangle}$ have been extensively studied by many researchers, whose work includes cyclic and self-dual codes [2], decoding of cyclic codes [3], Type II codes [20], duadic codes [27], repeated-root constacyclic codes [13].

## 2. Preliminaries

Let $R$ be a finite commutative ring. An ideal $I$ of $R$ is called principal if it is generated by one element. A ring $R$ is a principal ideal ring if its ideals are principal. $R$ is called a local ring if $R$ has a unique maximal ideal. Furthermore, a ring $R$ is called a chain ring if the set of all ideals of $R$ is a chain under settheoretic inclusion. The following equivalent conditions are well-known for the class of finite commutative chain rings (cf. [18, Proposition 2.1]).

The following equivalent conditions are well-known for the class of finite commutative chain rings.

Proposition 2.1. (cf. [18, Proposition 2.1]) For a finite commutative ring $R$ the following conditions are equivalent:
(i) $R$ is a local ring and the maximal ideal $M$ of $R$ is principal;
(ii) $R$ is a local principal ideal ring;
(iii) $R$ is a chain ring.

The following result is a well-known fact about finite commutative chain rings.
Proposition 2.2. Let $R$ be a finite commutative chain ring, with maximal ideal $M=\langle a\rangle$, and let $t$ be the nilpotency $a$. Then
(i) For some prime $p$ and positive integers $k, l(k \geq l),|R|=p^{k},|\bar{R}|=p^{l}$, and the characteristic of $R$ and $\bar{R}$ are powers of $p$;
(ii) For $i=0,1, \ldots, t,\left|\left\langle a^{i}\right\rangle\right|=|\bar{R}|^{t-i}$. In particular, $|R|=|\bar{R}|^{t}$, i.e., $k=l t$.

Given n-tuples $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right), y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in R^{n}$, their inner product or dot product is defined in the usual way:

$$
x \cdot y=x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}
$$

evaluated in $R$. Two words $x, y$ are called orthogonal if $x \cdot y=0$. For a linear code $C$ over $R$, its dual code $C^{\perp}$ is the set of $n$-tuples over $R$ that are orthogonal to all codewords of $C$, i.e.,

$$
C^{\perp}=\{x \mid x \cdot y=0, \forall y \in C\}
$$

A code $C$ is said to be self-orthogonal if $C \subseteq C^{\perp}$, and it is said to be self-dual if $C=C^{\perp}$. The following result is appeared in [18].
Proposition 2.3. Let $R$ be a finite chain ring of size $p^{\alpha}$. The number of codewords in any linear code $C$ of length $n$ over $R$ is $p^{k}$, for some integer $k, 0 \leq k \leq \alpha n$. Moreover, the dual code $C^{\perp}$ has $p^{\alpha n-k}$ codewords, so that $|C| \cdot\left|C^{\perp}\right|=|R|^{n}$.

Given an $n$-tuple $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in R^{n}$, the cyclic shift $\tau$ and negashift $\nu$ on $R^{n}$ are defined as usual, i.e.,

$$
\tau\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left(x_{n-1}, x_{0}, x_{1}, \cdots, x_{n-2}\right)
$$

and

$$
\nu\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left(-x_{n-1}, x_{0}, x_{1}, \cdots, x_{n-2}\right)
$$

A code $C$ is called cyclic if $\tau(C)=C$, and $C$ is called negacyclic if $\nu(C)=C$. More generally, if $\lambda$ is a unit of the ring $R$, then the $\lambda$-constacyclic ( $\lambda$-twisted) shift $\tau_{\lambda}$ on $R^{n}$ is the shift

$$
\tau_{\lambda}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left(\lambda x_{n-1}, x_{0}, x_{1}, \cdots, x_{n-2}\right)
$$

and a code $C$ is said to be $\lambda$-constacyclic if $\tau_{\lambda}(C)=C$, i.e., if $C$ is closed under the $\lambda$-constacyclic shift $\tau_{\lambda}$. From this definition, when $\lambda=1, \lambda$-constacyclic codes are cyclic codes, and when $\lambda=-1, \lambda$-constacyclic codes are just negacyclic codes.

Each codeword $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ is customarily identified with its polynomial representation $c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$, and the code $C$ is in turn identified with the set of all polynomial representations of its codewords. Then in the ring $\frac{R[x]}{\left\langle x^{n}-\lambda\right\rangle}, x c(x)$ corresponds to a $\lambda$-constacyclic shift of $c(x)$. From this, the following fact is straightforward:

Proposition 2.4. A linear code $C$ of length $n$ is $\lambda$-constacyclic over $R$ if and only if $C$ is an ideal of $\frac{R[x]}{\left\langle x^{n}-\lambda\right\rangle}$.

We knew that the dual of a cyclic code is a cyclic code, and the dual of a negacyclic code is a negacyclic code. In general, the dual of a $\lambda$-constacyclic code is a $\lambda^{-1}$-constacyclic code. (see, for example, [14], [16]).

The following result is also a fact appeared in [14].
Proposition 2.5. Let $R$ be a finite commutative ring, $\lambda$ be $a$ unit of $R$ and

$$
a(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}, b(x)=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1} \in R[x] .
$$

Then $a(x) b(x)=0$ in $\frac{R[x]}{\left\langle x^{n}-\lambda\right\rangle}$ if and only if ( $a_{0}, a_{1}, \ldots, a_{n-1}$ ) is orthogonal to $\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)$ and all its $\lambda^{-1}$-constacyclic shifts.

For a nonempty subset $S$ of the ring $R$, the annihilator of $S$, denoted by $\operatorname{ann}(S)$, is the set

$$
\operatorname{ann}(S)=\{f \mid f g=0, \text { for all } g \in S\} .
$$

Then $\operatorname{ann}(S)$ is an ideal of $R$.
For a polynomial $f$ of degree $k$, the polynomial $x^{k} f\left(x^{-1}\right)$ is called a reciprocal polynomial of polynomial $f$. The reciprocal polynomial of $f$ will be denoted by $f^{*}$. Suppose that $f(x)=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}+a_{k} x^{k}$. Then $f^{*}(x)=$ $x^{k}\left(a_{0}+a_{1} x^{-1}+\cdots+a_{k-1} x^{-(k-1)}+a_{k} x^{-k}\right)=a_{k}+a_{k-1} x+\cdots+a_{1} x^{k-1}+a_{0} x^{k}$. Note that $\left(f^{*}\right)^{*}=f$ if and only if the constant term of $f$ is nonzero, if and only if $\operatorname{deg}(f)=\operatorname{deg}\left(f^{*}\right)$. We denote $A^{*}=\left\{f^{*}(x) \mid f(x) \in A\right\}$. It is easy to see that if $A$ is an ideal, then $A^{*}$ is also an ideal. Since the dual of a $\lambda$-constacyclic code is a $\lambda^{-1}$-constacyclic code, $C^{\perp}$ is a $\lambda^{-1}$-constacyclic codes of length $n$ over $R$, and hence, $C^{\perp}$ is an ideal of the ring $\frac{R[x]}{\left\langle x^{n}-\lambda^{-1}\right\rangle}$, by Proposition 2.4. It is clear that $\mathrm{ann}^{*}(C)$ is also an ideal of $\frac{R[x]}{\left\langle x^{n}-\lambda-1\right\rangle}$. Therefore, applying Proposition 2.5, we can conclude that $g(x) \in \operatorname{ann}^{*}(C)$ if and only if $g(x)=f^{*}(x)$ for some $f(x) \in \operatorname{ann}(C)$, if and only if $g(x) \in C^{\perp}$. Then, we have a following result.

Proposition 2.6. Let $R$ be a finite commutative ring, and $\lambda$ be a unit of $R$. Assume that $C$ is a $\lambda$-constacyclic code of length $n$ over $R$. Then the dual $C^{\perp}$ of $C$ is ann $^{*}(C)$.

## 3. $\Lambda+u^{2} \Lambda_{2}$-constacyclic codes of length $2 \cdot 5^{s}$ over $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$

In this paper, we study $\Lambda+u^{2} \Lambda_{2}$-constacyclic codes of length $2 \cdot 5^{s}$ over $\mathbb{F}_{5 m}+$ $u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$ and its dual, where $\Lambda=\Lambda_{0}+u^{2} \Lambda_{2}$ is a unit of $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$. By Proposition 2.4, we know that these codes are ideals of the ring

$$
\mathcal{S}_{a}(s, \Lambda)=\frac{\mathcal{R}_{a}[x]}{\left\langle x^{2 \cdot 5^{s}}-\Lambda\right\rangle}
$$

We can see that $\left(\Lambda_{0}+u^{2} \Lambda_{2}\right)^{5^{m}}=\Lambda_{0}^{5^{m}}+u^{2 \cdot 5^{m}} \Lambda_{2}^{5^{m}}=\Lambda_{0}^{5^{m}}=\Lambda_{0}$. This follows that $\Lambda^{5^{m}} \Lambda_{0}^{-1}=1$. Hence, $\Lambda^{-1}=\Lambda^{5^{m}-1} \Lambda_{0}^{-1}$. We have $\Lambda^{5^{m}-1}=$ $\left(\Lambda_{0}+u^{2} \Lambda_{2}\right)^{5^{m}-1}=\Lambda_{0}^{5^{m}-1}+u^{2} \Lambda_{2}\left(5^{m}-1\right)=1+u^{2} \Lambda_{2}\left(5^{m}-1\right)$, implying that $\Lambda^{-1}=\Lambda_{0}^{-1}+u^{2} \Lambda_{2}^{\prime}$.

If the unit $\Lambda$ is a square in $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$, i.e., there exists a unit $\beta \in \mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$ such that $\Lambda=\beta^{2}$. Then we have

$$
x^{2 \cdot 5^{s}}-\Lambda=x^{2 \cdot 5^{s}}-\beta^{2}=\left(x^{5^{s}}+\beta\right)\left(x^{5^{s}}-\beta\right)
$$

Applying the Chinese remainder theorem, we can see that

$$
\mathcal{S}_{3}(s, \Lambda)=\frac{\mathcal{R}_{3}[x]}{\left\langle x^{5^{s}}+\beta\right\rangle} \oplus \frac{\mathcal{R}_{3}[x]}{\left\langle x^{5^{s}}-\beta\right\rangle} .
$$

This follows that all ideals of $\mathcal{S}_{3}(s, \Lambda)$ are of the form $A \oplus B$, where $A$ and $B$ are ideals of $\frac{\mathcal{R}_{a}[x]}{\left\langle x^{5^{3}}+\beta\right\rangle}$ and $\frac{\mathcal{R}_{3}[x]}{\left\langle x^{5^{5}}-\beta\right\rangle}$, respectively, i.e., they are $-\beta$ - and $\beta$ constacyclic codes of length $5^{s}$ over $\mathcal{R}_{3}$. Hence, if $\Lambda$ is a square in $\mathcal{R}_{3}$, a $\Lambda_{0}+u^{2} \Lambda_{2}$-constacyclic code of length $2 \cdot 5^{s}$ over $\mathcal{R}_{3}$ is expressed as a direct sum of $C_{+}$and $C_{-}$:

$$
C=C_{+} \oplus C_{-},
$$

where $C_{+}$and $C_{-}$are ideals of $\frac{\mathcal{R}_{3}[x]}{\left\langle x^{5^{s}}+\beta\right\rangle}$ and $\frac{\mathcal{R}_{3}[x]}{\left\langle x^{5^{s}}-\beta\right\rangle}$, respectively. The classification, detailed structure, and number of codewords of $\alpha$ and $-\alpha$ constacyclic codes length $5^{k}$ were investigated in [40]. Thus, when $\Lambda$ is a square in $\mathcal{R}_{3}$, we can obtain $\Lambda$-constacyclic codes $C$ of length $2 \cdot 5^{s}$ over $\mathcal{R}_{3}$ from that of the direct summands $C_{+}$and $C_{-}$(cf. [40]). Hence, we can prove that the dual code $C^{\perp}$ of $C$ is also a direct sum of the dual codes of the direct summand $C_{+}^{\perp}$ and $C_{-}^{\perp}$.
Theorem 3.1. Let the unit $\Lambda=\beta^{2} \in \mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$, and $C=C_{+} \oplus C_{-}$ be a constacyclic code of length $2 \cdot 5^{s}$ over $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$, where $C_{+}, C_{-}$ are ideals of $\frac{\mathcal{R}_{3}[x]}{\left\langle 5^{5^{3}}+\beta\right\rangle}, \frac{\mathcal{R}_{3}[x]}{\left\langle x^{5^{s}}-\beta\right\rangle}$, respectively. Then

$$
C^{\perp}=C_{+}^{\perp} \oplus C_{-}^{\perp}
$$

In particular, $C$ is a self-dual constacyclic code of length $2 \cdot 5^{s}$ over $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+$ $u^{2} \mathbb{F}_{5^{m}}$ if and only if $C_{+}, C_{-}$are self-dual - $\beta$-constacyclic code and self-dual $\beta$-constacyclic code of length $5^{s}$ over $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$, respectively.
Proof. It is easy to verify that $C_{+}^{\perp} \oplus C_{\perp}^{\perp} \subseteq C^{\perp}$. On the other hand,

$$
\left|C_{+}^{\perp} \oplus C_{-}^{\perp}\right|=\left|C_{+}^{\perp}\right| \cdot\left|C_{-}^{\perp}\right|=\frac{\left|\mathcal{R}_{3}\right|^{5^{s}}}{\left|C_{+}\right|} \cdot \frac{\left|\mathcal{R}_{3}\right|^{p^{s}}}{\left|C_{-}\right|}=\frac{\left|\mathcal{R}_{3}\right|^{5^{s}}}{\left|C_{+}\right| \cdot\left|C_{-}\right|}=\frac{\left|\mathcal{R}_{3}\right|^{5^{s}}}{|C|}=\left|C^{\perp}\right|
$$

This implies that $C^{\perp}=C_{+}^{\perp} \oplus C_{-}^{\perp}$.
Therefore, we only need to concentrate on the main case where $\Lambda$ is not a square in $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$. We first start by characterizing this condition.

Proposition 3.2. Let $\Lambda=\Lambda_{0}+u^{2} \Lambda_{2}, \Lambda_{0}, \Lambda_{2} \in \mathbb{F}_{5^{m}}, \Lambda_{0} \neq 0, \Lambda_{2} \neq 0$, be a unit of $\Lambda_{0}+u^{2} \Lambda_{2}$ of $\mathbb{F}_{5^{m}}+u \mathbb{F}_{5^{m}}+u^{2} \mathbb{F}_{5^{m}}$. Then $\Lambda$ is not a square if and only if $\Lambda_{0}$ is not a square.

Proof. Suppose that $\Lambda_{0}^{\prime 2}=\Lambda_{0}$, we consider $\left(\Lambda_{0}^{\prime}+u \Lambda_{1}^{\prime}+u^{2} \Lambda_{2}^{\prime}\right)^{2}$, where $\Lambda_{i}^{\prime} \in \mathbb{F}_{p^{m}}$. Assume that $\left(\Lambda_{0}^{\prime}+u \Lambda_{1}^{\prime}+u^{2} \Lambda_{2}^{\prime}\right)^{2}=\Lambda_{0}+u^{2} \Lambda_{2}$. Then we have $\Lambda_{0}^{\prime 2}+$ $2 \Lambda_{0}^{\prime} \Lambda_{1}^{\prime} u+2 \Lambda_{0}^{\prime} \Lambda_{2}^{\prime}+u^{2} \Lambda_{1}^{\prime 2}+2 u^{3} \Lambda_{1}^{\prime} \Lambda_{2}^{\prime 4} \Lambda_{2}^{\prime 2}=\Lambda_{0}+u^{2} \Lambda_{2}$. Comparing coefficients, we have

$$
\Lambda_{0}=\Lambda_{0}^{\prime 2}, 2 \Lambda_{0}^{\prime} \Lambda_{1}^{\prime}=0, \Lambda_{2}=\Lambda_{1}^{\prime 2}+2 \Lambda_{0}^{\prime} \Lambda_{2}^{\prime}
$$

Since $\Lambda_{0}^{\prime} \neq 0$, we must have $\Lambda_{1}^{\prime}=0$. By hypothesis, $\Lambda_{0}^{\prime-1}$ exists, we can compute $\Lambda_{2}^{\prime}=2^{-1} \Lambda_{0}^{\prime-1} \Lambda_{2}$.

From this, we can prove the following result.
Proposition 3.3. Any nonzero linear polynomial $c x+d \in \mathbb{F}_{5^{m}}[x]$ is invertible in $\mathcal{S}_{3}(s, \Lambda)$.
Proof. In $\mathcal{S}_{3}(s, \Lambda)$, we have

$$
(x+d)^{5^{s}}(x-d)^{5^{s}}=\left(x^{2}-d^{2}\right)^{5^{s}}=x^{2 \cdot 5^{s}}-d^{2 \cdot 5^{s}}=\left(\Lambda_{0}-d^{2 \cdot 5^{s}}\right)+u^{2} \Lambda_{2}
$$

Since $\Lambda_{0}$ is not a square in $\mathbb{F}_{5^{m}}, \Lambda_{0}-d^{2 \cdot 5^{s}}$ is invertible in $\mathbb{F}_{5^{m}}$. This follows that $\left(\Lambda_{0}-d^{2 \cdot 5^{s}}\right)+u^{2} \Lambda_{2}$ is invertible in $\mathcal{S}_{3}(s, \Lambda)$. Thus,

$$
(x+d)^{-1}=(x+d)^{5^{s}-1}(x-d)^{5^{s}}\left(\Lambda_{0}-d^{2 \cdot 5^{s}}+u^{2} \Lambda_{2}\right)^{-1}
$$

Therefore, for any $c \neq 0$ in $\mathbb{F}_{5^{m}}$,

$$
(c x+d)^{-1}=c^{-1}\left(x+c^{-1} d\right)^{-1}=\left(x+c^{-1} d\right)^{5^{s}-1}\left(x-c^{-1} d\right)^{5^{s}}\left(\Lambda_{0}-c^{-2 \cdot 5^{s}} d^{2 \cdot 5^{s}}+u^{2} \Lambda_{2}\right)^{-1} .[
$$

Since $\Lambda_{0} \in \mathbb{F}_{5^{m}}$, we have $\Lambda_{0}^{5^{t m}}=\Lambda_{0}$, for any positive integer $t$. By the Division Algorithm, there exist nonnegative integers $\alpha_{q}, \alpha_{r}$ such that $s=$ $\alpha_{q} m+\alpha_{r}$, and $0 \leq \alpha_{r} \leq m-1$. Let $\alpha_{0}=\Lambda_{0}^{5^{\left(\alpha_{q}+1\right) m-s}}=\Lambda_{0}^{5^{m-\alpha_{r}}}$. Then
$\alpha_{0}^{5^{s}}=\Lambda_{0}^{5^{\left(\alpha_{q}+1\right) m}}=\Lambda_{0}$. The following provides the key to prove that the ring $\mathcal{S}_{3}(s, \Lambda)$ is a chain ring.

Lemma 3.4. In $\mathcal{S}_{3}(s, \Lambda)$, we have $\left\langle\left(x^{2}-\alpha_{0}\right)^{5^{s}}\right\rangle=\langle u\rangle$. In particular, $x^{2}-\alpha_{0}$ is nilpotent with nipotency index $3 \cdot 5^{s}$.
Proof. The results follow from the fact that in $\mathcal{S}_{3}(s, \Lambda),\left(x^{2}-\alpha_{0}\right)^{5^{s}}=$ $x^{2 \cdot 5}-\Lambda_{0}=u \Lambda_{1}+u^{2} \Lambda_{2}$.

Any element $f(x)$ of $\mathcal{S}_{3}(s, \Lambda)$ can be expressed as a polynomial of degree up to $2 \cdot 5^{s}-1$ of $\mathcal{R}_{3}[x]$, and so $f(x)=f_{1}(x)+u f_{2}(x)+u^{2} f_{3}(x)$, where $f_{1}(x), f_{2}(x), f_{3}(x)$ are polynomials of degrees up to $2 \cdot 5^{s}-1$ of $\mathbb{F}_{5^{m}}[x]$. Thus, $f(x)$ can be uniquely represented as

$$
\begin{aligned}
f(x)=\sum_{i=0}^{5^{s}-1}\left(c_{0 i} x+d_{0 i}\right)\left(x^{2}-\alpha_{0}\right)^{i} & +u \sum_{i=0}^{5^{s}-1}\left(c_{1 i} x+d_{1 i}\right)\left(x^{2}-\alpha_{0}\right)^{i} \\
& +u^{2} \sum_{i=0}^{5^{s}-1}\left(c_{3 i} x+d_{3 i}\right)\left(x^{2}-\alpha_{0}\right)^{i} \\
= & \left(c_{00} x+d_{00}\right)+\left(x^{2}-\alpha_{0}\right) \sum_{i=1}^{5^{s}-1}\left(c_{0 i} x+d_{0 i}\right)\left(x^{2}-\alpha_{0}\right)^{i-1} \\
& +u \sum_{i=0}^{5^{s}-1}\left(a_{1 i} x+b_{1 i}\right)\left(x^{2}-\alpha_{0}\right)^{i}+u^{2} \sum_{i=0}^{5^{s}-1}\left(c_{3 i} x+d_{3 i}\right)\left(x^{2}-\alpha_{0}\right)^{i},
\end{aligned}
$$

where $c_{0 i}, d_{1 i}, c_{0 i}, d_{1 i} \in \mathbb{F}_{5^{m}}$. By Lemma $3.4, u \in\left\langle x^{2}-\alpha_{0}\right\rangle$, and so $f(x)$ can be written as

$$
f(x)=\left(c_{00} x+d_{00}\right)+\left(x^{2}-\alpha_{0}\right) g(x)
$$

Thus, $f(x)$ is non-invertible if and only if $c_{00}=d_{00}=0$, i.e., $f(x) \in\left\langle x^{2}-\alpha_{0}\right\rangle$. It means that $\left\langle x^{2}-\alpha_{0}\right\rangle$ forms the set of all non-invertible elements of $\mathcal{R}_{a}$. Thus, $\mathcal{S}_{3}(s, \Lambda)$ is a local ring with maximal ideal $\left\langle x^{2}-\alpha_{0}\right\rangle$, hence, by Proposition 2.1, $\mathcal{S}_{3}(s, \Lambda)$ is a chain ring. We summarize the discussion above in the following theorem.

Theorem 3.5. The ring $\mathcal{S}_{3}(s, \Lambda)$ is a chain ring with maximal ideal $\left\langle x^{2}-\alpha_{0}\right\rangle$, whose ideals are

$$
\mathcal{S}_{3}(s, \Lambda)=\langle 1\rangle \supsetneq\left\langle x^{2}-\alpha_{0}\right\rangle \supsetneq \cdots \supsetneq\left\langle\left(x^{2}-\alpha_{0}\right)^{3 \cdot 5^{s}-1}\right\rangle \supsetneq\left\langle\left(x^{2}-\alpha_{0}\right)^{3 \cdot 5^{s}}\right\rangle=\langle 0\rangle .
$$

From Theorem 3.5, we now can give the structure of $\Lambda_{0}+u^{2} \Lambda_{2}$-constacyclic codes of length $2 \cdot 5^{s}$ over $\mathcal{R}_{3}$, and their sizes as follows.
Theorem 3.6. $\Lambda_{0}+u^{2} \Lambda_{2}$-constacyclic codes of length $2 \cdot 5^{s}$ over $\mathcal{R}_{3}$ are precisely the ideals $\left\langle\left(x^{2}-\alpha_{0}\right)^{i}\right\rangle \subseteq \mathcal{R}_{3}$, where $0 \leq i \leq 3 \cdot 5^{s}$. Each $\Lambda_{0}+u^{2} \Lambda_{2}$-constacyclic code $\left\langle\left(x^{2}-\alpha_{0}\right)^{i}\right\rangle$ has $5^{2 m\left(3 \cdot 5^{s}-i\right)}$ codewords.

For a $\Lambda_{0}+u^{2} \Lambda_{2}$-constacyclic code $C=\left\langle\left(x^{2}-\alpha_{0}\right)^{i}\right\rangle \subseteq \mathcal{R}_{3}$ of length $2 \cdot 5^{s}$ over $\mathcal{R}_{3}$, by Proposition 2.5 and Proposition 2.10, its dual $C^{\perp}$ is a $\Lambda_{0}+u^{2} \Lambda_{2^{-}}$ constacyclic code of length $2 \cdot 5^{s}$ over $\mathcal{R}_{3}$. This means

$$
C^{\perp} \subseteq \mathcal{S}_{3}\left(s, \Lambda^{-1}\right)=\frac{\mathcal{R}_{3}[x]}{\left\langle x^{2 \cdot 5^{s}}-\Lambda^{-1}\right\rangle}
$$

Hence, Lemma 3.4 and Theorem 3.5 are applicable for $C^{\perp}$ and $\mathcal{S}_{3}\left(s, \Lambda^{-1}\right)$. Therefore, similar to the case of $\mathcal{S}_{3}(s, \Lambda)$, we can prove that $\mathcal{S}_{3}\left(s, \Lambda^{-1}\right)$ is a chain ring.
Theorem 3.7. The ring $\mathcal{S}_{3}\left(s, \Lambda^{-1}\right)$ is a chain ring with maximal ideal $\left\langle x^{2}-\right.$ $\left.\alpha_{0}^{-1}\right\rangle$, whose ideals are
$\mathcal{S}_{3}\left(s, \Lambda^{-1}\right)=\langle 1\rangle \supsetneq\left\langle x^{2}-\alpha_{0}^{-1}\right\rangle \supsetneq \cdots \supsetneq\left\langle\left(x^{2}-\alpha_{0}^{-1}\right)^{3 \cdot 5^{s}-1}\right\rangle \supsetneq\left\langle\left(x^{2}-\alpha_{0}^{-1}\right)^{3 \cdot 5^{s}}\right\rangle=\langle 0\rangle$.
In other words, $\Lambda^{-1}$-constacyclic codes of length $2.5^{s}$ over $\mathcal{R}_{3}$ are precisely the ideals $\left\langle\left(x^{2}-\alpha_{0}^{-1}\right)^{i}\right\rangle \subseteq \mathcal{S}_{3}\left(s, \Lambda^{-1}\right)$, where $0 \leq i \leq 3 \cdot 5^{s}$. Each $\Lambda^{-1}$-constacyclic code $\left\langle\left(x^{2}-\alpha_{0}^{-1}\right)^{i}\right\rangle \subseteq \mathcal{S}_{3}\left(s, \Lambda^{-1}\right)$ has $5^{2 m i}$ codewords.

Applying Theorem 3.7, we now can describe the duals of $\Lambda$-constacyclic codes in the following corollary.
Corollary 3.8. Let $C$ be a $\Lambda$-constacyclic code of length $2 \cdot 5^{\text {s }}$ over $\mathcal{R}_{3}$. Then $C=\left\langle\left(x^{2}-\alpha_{0}\right)^{i}\right\rangle \subseteq \mathcal{R}_{3}$, for some $i \in\left\{0,1, \ldots, 3 \cdot 5^{s}\right\}$, and its dual $C^{\perp}$ is the $\Lambda^{-1}$-constacyclic code

$$
C^{\perp}=\left\langle\left(x^{2}-\alpha_{0}^{-1}\right)^{3 \cdot 5^{s}-i}\right\rangle \subseteq \mathcal{R}_{3}
$$

Proof. Let $C=\left\langle\left(x^{2}-\alpha_{0}\right)^{i}\right\rangle \subseteq \mathcal{S}_{3}(s, \Lambda)$ be a $\Lambda$-constacyclic code of length $2 \cdot 5^{s}$ over $\mathcal{R}_{3}$. Then, $C^{\perp}$ is an ideal of $\mathcal{S}_{3}\left(s, \Lambda^{-1}\right)$. By Theorem 3.7, $|C|=5^{2 m\left(3.5^{s}-i\right)}$, and hence, by Proposition 2.3,

$$
\left|C^{\perp}\right|=\frac{\left|\mathcal{R}_{3}\right|^{2 \cdot 5^{s}}}{|C|}=\frac{5^{6 m 5^{s}}}{p^{2 m\left(3 \cdot 5^{s}-i\right)}}=5^{2 m i}
$$

From Theorem 3.7, we have $C^{\perp}=\left\langle\left(x^{2}-\alpha_{0}^{-1}\right)^{5^{s}-i}\right\rangle \subseteq \mathcal{S}_{3}\left(s, \Lambda^{-1}\right)$.

## References

[1] M.C.V. Amarra and F. R. Nemenzo, On $(1-u)$ - cyclic codes over $\mathbb{F}_{p^{k}}+u \mathbb{F}_{p^{k}}$, Applied Mathematics Letters, 21 (2008), 1129-1133.
[2] A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, IEEE Trans. Inform. Theory 45 (1999), 1250-1255.
[3] A. Bonnecaze and P. Udaya, Decoding of cyclic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, IEEE Trans. Inform. Theory 45 (1999), 2148-2157.
[4] E.R. Berlekamp, Algebraic Coding Theory, revised 1984 edition, Aegean Park Press, 1984.
[5] E. R. Berlekamp, Negacyclic codes for the Lee metric, in: Proceedings of the Conference on Combinatorial Mathematics and Its Application, Chapel Hill, NC, 1968, 298-316.
[6] S.D. Berman, Semisimple cyclic and Abelian codes. II, Kibernetika (Kiev) 3, 1967, 21-30 (Russian); translated as Cybernetics 3 (1967), 17-23.
[7] A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, IEEE Trans. Inform. Theory 45 (1999), 1250-1255.
[8] B. Chen, H.Q. Dinh, H. Liu and L.Wang, Constacyclic codes of length $2 p^{s}$ over $\mathbb{F}_{p^{m}}+$ $u \mathbb{F}_{p^{m}}, 36$ 2016, 108-130.
[9] A.R. Calderbank, A.R. Hammons, P.V. Kumar, N.J. A. Sloane, and P. Solé, A linear construction for certain Kerdock and Preparata codes, Bull. AMS 29 (1993), 218-222.
[10] G. Castagnoli, J.L. Massey, P.A. Schoeller, and N. von Seemann, On repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), 337-342.
[11] B. Chen, L. Lin, and H. Liu, Matrix product codes with Rosenbloom-Tsfasma metric, Acta Math. Sci. 33B (2013), 687-700.
[12] H.Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields \& Appl. 14 (2008), 22-40.
[13] H. Q. Dinh, Constacyclic codes of length $2^{s}$ over Galois extension rings of $\mathbb{F}_{2}+u \mathbb{F}_{2}$, IEEE Trans. Inform. Theory 55 (2009), 1730-1740.
[14] H.Q. Dinh, Constacyclic codes of length $p^{s}$ over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$, J. Algebra 324 (2010), 940-950.
[15] H.Q. Dinh, Repeated-root constacyclic codes of length $2 p^{s}$, Finite Fields \& Appl. 18 (2012), 133-143.
[16] H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3 p^{s}$ and their duals, Discrete Math. 313(2013), 983-991.
[17] H. Q. Dinh, Structure of repeated-root cyclic and negacyclic codes of length $6 p^{s}$ and their duals, AMS Contemporary Mathematics 609 (2014), 69-87.
[18] H.Q. Dinh and S.R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory 50 (2004), 1728-1744.
[19] H.Q. Dinh, S. Dhompongsa and S. Sriboonchitta, Repeated-root constacyclic codes of prime power length over $\frac{\mathbb{F}_{p^{m}}[u]}{\left\langle u^{a}\right\rangle}$ and their duals, Discrete Math. to appear.
[20] S. Dougherty, P. Gaborit, M. Harada, and P. Sole, Type II codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, IEEE Trans. Inform. Theory 45 (1999), 32-45.
[21] S.T. Dougherty and M.M. Skriganov, Macwilliams duality and Rosenbloom-Tsfasman metric, Moscow Math. J., 2 (2002), 81-97.
[22] H.Q. Dinh, L. Wang and S.Zhu, Negacyclic codes of length $2 p^{s}$ over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$, Finite Fields Appl, 31 (2015), 178-201.
[23] G. Falkner, B. Kowol, W. Heise, and E. Zehendner, On the existence of cyclic optimal codes, Atti Sem. Mat. Fis. Univ. Modena 28 (1979), 326-341.
[24] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J. A. Sloane, and P. Solé, The $\mathbb{Z}_{4}-$ linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), 301-319.
[25] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003.
[26] K. Lee, Automorphism group of the Rosenbloom-Tsfasman space, Eur. J. Combin. 24 (2003), 607-612.
[27] S. Ling and P. Solé, Duadic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, Appl. Algebra Engrg. Comm. Comput. 12 (2001), 365-379.
[28] J.L. Massey, D.J. Costello, and J. Justesen, Polynomial weights and code constructions, IEEE Trans. Inform. Theory 19 (1973), 101-110.
[29] B.R. McDonald, Finite rings with identity, Pure and Applied Mathematics, Vol. 28, Marcel Dekker, New York, 1974.
[30] A.A. Nechaev, Kerdock code in a cyclic form, (in Russian), Diskr. Math. (USSR) 1 (1989), 123-139. English translation: Discrete Math. and Appl. 1 (1991), 365-384.
[31] G. Norton and A. Sălăgean-Mandache, On the structure of linear cyclic codes over finite chain rings, Appl. Algebra Engrg. Comm. Comput. 10 (2000), 489-506.
[32] V. Pless and W.C. Huffman, Handbook of coding theory, Elsevier, Amsterdam, 1998.
[33] E. Prange, Cyclic Error-Correcting Codes in Two Symbols, (September 1957), TN-57103.
[34] E. Prange, Some cyclic error-correcting codes with simple decoding algorithms, (April 1958), TN-58-156.
[35] E. Prange, The use of coset equivalence in the analysis and decoding of group codes, (1959), TN-59-164.
[36] E. Prange, An algorithm for factoring $x^{n}-1$ over a finite field, (October 1959), TN-59-175.
[37] M.Y. Rosenbloom and M. A. Tsfasman, Codes for the m-metric, Problems Inf. Trans. 33 (1997), 45-52.
[38] R.M. Roth and G. Seroussi, On cyclic MDS codes of length $q$ over GF(q), IEEE Trans. Inform. Theory 32 (1986), 284-285.
[39] R. Sobhani, and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring $G R\left(p^{2}, m\right)$ Discrete Applied Mathematics, 157 (2009), 2892-2903.
[40] R. Sobhani, Complete classification of $\left(\delta+u^{2} \gamma\right)$-constacyclic codes of length $p^{k}$ over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}+u^{2} \mathbb{F}_{p^{m}}$, FFA, 34 (2015), 123-138.
[41] M.M. Skriganov, On linear codes with large weights simultaneously for the RosenbloomTsfasman and Hamming metrics, J. of Complexity 23 (2007), 926-936.
[42] J.H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), 343345.

