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Abstract

There are many epidemic diseases in the swine population such as
swine fever disease, foot and mouth disease and Aujesky’s disease. One
of the most important diseases in the swine industry is porcine repro-
ductive and respiratory syndrome (PRRS). Mathematical models of the
disease are needed to study its behavior and discover effective and con-
trol strategies. Various research works on this subject have not been able
find out how to control the disease effectively. In this work, we study a
mathematical model of PRRS infection with a time-delay in the infec-
tion process, incorporating infectiousness decay. We carry out a stability
analysis to discover the effect of time delay on the dynamic behavior of
the model. Our work is expected to form a basis for further investiga-
tion, building upon our basic model, to test the potential effectiveness of
employing various intervention strategies for disease containment, such
as vaccination and isolation.

Key words: porcine reproductive and respiratory syndrome, time-delay, stability, decaying
infectiousness.
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1. Introduction

Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most
devastating infectious diseases in the swine industry. PRRS was found in the
United States in 1987 and the causative virus was classified as Arterivirus in
the Netherlands in 1991.

PRRS is caused by positive-stranded RNA or porcine reproductive and res-
piratory syndrome virus (PRRSV) which is responsible for reproductive failure
in sows resulting in infertility, abortions and stillbirths. The virus has a par-
ticular relevance for macrophages (white blood cells) in the lungs where it
reduces the immune response. Apart from severe reproductive failure in sows,
other important manifestations of the disease are respiratory symptoms and
increased pre-weaning mortality in suckling pigs and a mild flu-like symptoms
in grower-finisher pigs [1-3].

Several researchers have investigated the disease and how the infection
spread and the factors that play crucial roles in its symptoms [4-8] but have
not yet been able to discover efficient control strategies. Specifically, the delay
in time before the susceptible pigs are effectively infected by the infective pop-
ulation has not been taken into account, neither is the fact that infectiousness
decays with time even though this has been reported by some investigators [8].
Therefore, we construct here a structured model for the spread of PRRSV that
incorporates both the time delay as well as the decline of infectiousness with
time.

2. Model system

In this work, we propose a model of PRRS infection with a time-delay in the
infection incidences, incorporating infectiousness decay in the following form:

d

dt
S(t) = bssS(t) + bisI(t) − βe−μτ S(t − τ )G(t − τ ) − dsS(t) + C

d

dt
I(t) = βe−μτ S(t − τ )G(t − τ ) + biiI(t) − diI(t) (1)

d

dt
G(t) = αI(t) − γG(t)

where S(t) is the number of swine susceptible to the disease at time t, I(t) is
the number of infected swine at time t, G(t) represents decaying infectiousness
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of infected swine at time t, bssS(t) is the birth rate of susceptible swine from
susceptible sows, bisI(t) is the birth rate of susceptible swine from infected
sows, biiI(t) is the birth rate of infected swine from infected sows, dsS(t) is
the natural death rate of susceptible swine, diI(t) is the natural death rate
of infected swine, β is the transmission rate constant, C represents a constant
flow of susceptible swine into the whole population per unit time and the factor
βe−μτ S(t−τ )G(t−τ ) represents the infection rate in which we incorporate the
effect of the time-delay with e−μτ being the probability that a swine survives
from the time t − τ to time t. Considering PRRS data reported by Charpin et
al.[8], we see that the number of new infections per infected swine decreases
exponentially as time passes, after a delay of a few days before infection reaches
a peak. So, eγ(t−τ) represents the rate at which susceptible swine at time t is
infected by a swine infected at time τ per infected swine. To obtain the total
rate of infection at time t due to all swine infected at time τ , we multiply
eγ(t−τ) by I(t)dτ and integrate from 0 to t. We denote α

∫ t

0 e−γ(t−τ)I(τ )dτ by
G and differentiate G with respect to t to obtain the third equation in (1).

For convenience, we rewrite the system (1) into the form:

dS
dt = −ωS + bI − βe−μτ SτGτ + C

dI
dt

= βeμτ SτGτ − ϕI

dG
dt = αI − γG

(2)

where S = S(t), I = I(t), G = G(t), Sτ = S(t−τ ), Gτ = G(t−τ ), ω = ds−bss,
b = bis and ϕ = di − bii.

3. Boundedness of solutions

The boundedness of solutions to the delayed model system (2) can be deter-
mined using the comparison theorem and can be stated as in Theorem 3.1.

Theorem 3.1 There exists an M > 0 such that for any solution (S(t), I(t), G(t))
of system (2) with positive initial values, S(t) ≤ M, I(t) ≤ M and G(t) ≤ M
for all t > t0, for some t0 ≥ 0, provided ω > 0 and ϕ − b > α.

Proof. We define

w(t) = S(t) + I(t) + G(t)

Finding the derivative of w with respect to t, we obtain
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dw
dt = dS

dt + dI
dt + dG

dt

= (−ωS + BI − βe−μτSτ Gτ + C) + (βe−μτ SτGτ − ϕI) + (αI − γG)

= C − [ωS − bI + ϕI − αI + γG]

= C − [ωS + (ϕ − b − α)I + γG]

dw
dt ≤ C − hw(t);

where h = min{ω, ϕ − b − α, γ}.
Next, we consider the following comparison equation:

dw1

dt
= C − hw1(t).

Then,

w1(t) =
C

h
+ w1(0)e−ht.

By the Comparison Test, we obtain

w(t) ≤ w1(t) =
C

h
+ w1(0)e−ht ≤ C

h
+ w1(0)e−ht0 ≡ M, if t0 ≤ t.

Since w(t) = S(t) + I(t) + G(t), S(t), I(t), and G(t) are also bounded. That
is, there exists an M > 0 such that S(t) ≤ M, I(t) ≤ M and G(t) ≤ M for
all t ≥ t0, for some t0 ≥ 0, and thus each solution of system (2) with positive
initial values is uniformly ultimately bounded. �

4. Stability

In this section, we analyze the model system in terms of its stability near
the equilibrium points of (2). By setting dS

dt = dI
dt = dG

dt = 0, we obtain 2
equilibrium points for the system (2) as follows.

1. Disease-free equilibrium

E0 = (S0, Io, G0) =
(C

ω
, 0, 0

)

in which S0 is positive if
ω > 0 (3).

2. Endemic equilibrium
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E∗ = (S∗, I∗, G∗) =
( γϕ

αβe−μτ
,
γϕω − Cαβe−μτ

αβe−μτ (b − ϕ)
,
α

γ
I∗

)

which is positive, making ohysical sense, if
(i) ω > 0, ϕ − b > 1 and Cαβe−μτ > γϕω, or
(ii) ω < 0 and ϕ − b > α.
This means that if (i) holds then there could be co-existence of both equi-

libriums. However, if (ii) holds, there will only be the endemic equilibrium.
The stability of the disease free equilibrium is given in the following theorem.

Theorem 4.1 If (3) holds and

γϕ >
Cαβ

ω
, (4)

then the disease-free equilibrium E0 is locally asymptotically stable for all τ ≥ 0.

Proof. Local stability of the solution E0 may be determined by considering the
behavior of the linearized system of (2). If we define x(t) = S(t)− C

ω
, y(t) = I(t)

and z(t) = G(t), then we obtain:

d
dt

x(t) = −ωx(t) + by(t) − C
ω

βe−μτ z(t − τ )

d
dty(t) = −ϕy(t) + C

ω βe−μτ z(t − τ )

d
dtz(t) = αy(t) − γz(t)

(5)

and the characteristic equation of the Jacobian matrix of the system (2) is then:

(λ + ω)
[
λ2 + (γ + ϕ)λ + γϕ − Cαβ

ω
e−(λ+μ)τ

]
= 0 (6)

Clearly, the equation (6) has a solution λ1 = −ω, which is negative since
(3) holds. Next, we consider the factor

λ2 + (γ + ϕ)λ + γϕ − Cαβ

ω
e−(λ+μ)τ (7)

For τ = 0, we have

λ2 + (γ + ϕ)λ + γϕ − Cαβ

ω
(8)

Since γϕ > Cαβ
ω , from the Routh-Hurwitz criteria, we can conclude that all

roots of (8) have negative real parts. So, all solutions of (6) have negative real
parts for τ = 0.

Next, for τ > 0, we suppose that Re(λ) of (7) can be positive for some
τ > 0, then there must be a value of τ > 0 such that Re(λ) = 0. Let λ = ηi
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where η is real. Substituting λ = ηi into (7) and equating coefficients of like
terms to zero, we have

−η2 + γϕ =
Cαβ

ω
e−μτ cos ητ (9)

and
(γ + ϕ)η = −Cαβ

ω
e−μτsin ητ (10)

Squaring both sides of equations (9) and (10) and adding, we obtain

η4 + (γ2 + ϕ2)η2 − C2α2β2

ω2
e−2μτ + γ2ϕ2 = 0.

Letting θ = η2, we have

θ2 + (γ2 + ϕ2)θ − C2α2β2

ω2
e−2μτ + γ2ϕ2 = 0 (11)

Since (4) holds, we have

γ2ϕ2 >
C2α2β2

ω2
>

C2α2β2

ω2
e−2μτ .

Thus,

γ2ϕ2 =
C2α2β2

ω2
e−2μτ > 0

Hence, by the Routh-Hurwitz criteria, equation (11) has no positive solutions
which means there is no value of τ > 0 such that Re(λ) = 0, which means that
λ remains negative for τ ≥ 0. Therefore, the disease-free equilibrium is locally
asymptotically stable for all τ ≥ 0. �

The next theorem involves the stability of the endemic equilibrium E∗.

Theorem 4.2 If
(i) ω > 0, ϕ − b > α, Cαβe−μτ > γϕω and Cαβ

γ2(ϕ−b) > 1, or

(ii) ω < 0, ϕ − b > α, γ + ϕ + ω > 0 and Cαβ
γ2(ϕ−b)

> 1,

then the endemic equilibrium E∗ is locally asymptotically stable for τ = 0.

Proof. we define x(t) = S(t) − S∗, y(t) = I(t) − I∗ and z(t) = G(t) − G∗

which leads us to
d
dtx(t) = −ωx(t) − βe−μτG∗x(t − τ ) + by(t) − βe−μτ S∗z(t − τ )

d
dty(t) = βe−μτ G∗x(t − τ ) − ϕy(t) + βe−μτ S∗z(t − τ )

d
dtz(t) = αy(t) − γz(t)

(12)
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and the corresponding characteristic equation is given by

λ3 + a1λ
2 + a2λ

2e−μτ + a3λ + a4λe−μτ + a5e
−μτ + γϕω = 0 (13)

where
a1 = γ + ϕ + ω,

a2 = γϕω−Cαβe−μτ

γ(b−ϕ)
,

a3 = γϕ + γω + ϕω,

a4 = γϕω−Cαβe−μτ

b−ϕ − γϕω−Cαβe−μτ

γ − γϕ

and a5 = Cαβe−μτ − 2γϕω.

For τ = 0, we have

λ3+
[
γ+ϕ+ω+

γϕω − Cαβ

γ(b − ϕ)

]
λ2+

[γϕω − Cαβ

b − ϕ
+

Cαβ

γ
+γω

]
λ+Cαβ−γϕω = 0

(14)
In the case (i), since Cαβ > Cαβe−μτ > γϕω and Cαβ

γ2(ϕ−b)
> 1, applying

the Routh-Hurwitz criteria, we have

γ + ϕ + ω +
γϕω − Cαβ

γ(b − ϕ)
> 0,

Cαβ − γϕω > 0

and
[
γ + ϕ + ω + γϕω−Cαβ

γ(b−ϕ)

][
γϕω−Cαβ

b−ϕ + Cαβ
γ + γω

]

= 1
γ(ϕ−b)

[
Cαβ(ϕ − b) + γ(Cαβ − γbω)

][
γ + ϕ + ω + γϕω−Cαβ

γ(b−ϕ)

]

≥ 1
γ(ϕ−b)

Cαβ(ϕ − b)
[
γ + ϕ + ω + γϕω−Cαβ

γ(b−ϕ)

]
≥ Cαβ − γϕω.

So, all solution of (14) have negative real parts for τ = 0.
In the case (ii), we have ω < 0, ϕ − b > α, γ + ϕ + ω > 0 and Cαβ

γ2(ϕ−b)
> 1.

From the Routh-Hurwitz criteria, we obtain

γ + ϕ + ω + γϕω−Cαβ
γ(b−ϕ) > 0,

Cαβ − γϕω > 0 and

[γ + ϕ + ω + γϕω−Cαβ
γ(b−ϕ) ][ γϕω−Cαβ

b−ϕ + Cαβ
γ + γω]

≥ 1
γ(ϕ−b)Cαβ(ϕ − b)[γ + ϕ + ω + γϕω−Cαβ

γ(b−ϕ) ] ≥ Cαβ − γϕω.

Thus, all solutions of (14) have negative real parts for τ = 0. Therefore, in
cases (i) and (ii), all solutions of (13) have negative real parts for τ = 0 such
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that the endemic equilibrium is locally asymptotically stable for this completes
the proof of Theorem 4.2. �

Next, we consider the case where τ > 0. We know that all solutions of (13)
have negative real parts for τ = 0. So, we suppose that Re(λ) of Eq. (13) can
be positive for some τ > 0. Then there must be a value of τ > 0 such that
Re(λ) = 0. So, we assume λ = ηi where η is real. Substituting λ = ηi into
equation (13), we have

−a1η
2 + γϕω = a2η

2cos ητ − a4ηsin ητ − a5cos ητ (15)

and
−η3 + a3η = −a2η

2sin ητ − a4ηcos ητ + a5sin ητ (16)

Squaring both sides of equations (15) and (16) and adding, we obtain

η6 +(a2
1 −a2

2 −2a3)η4 +(a2
3 −a2

4 −2a1γϕω +2a2a5)η2 +γ2ϕ2ω2 −a2
5 = 0 (17)

Letting θ = η2, we are led to the following equation in θ :

P (θ) = θ3 + A1θ
2 + A2θ + A3 = 0 (18)

where
A1 = a2

1 − a2
2 − 2a3,

A2 = a2
3 − a2

2 − 2a1γϕω + 2a2a5,

A3 = γ2ω2 − a2
5

(19)

We need the following Lemmas.

Lemma 4.1 Let τ > 0. Suppose that the equation (18) has no positive roots.
Then, all solutions of equation (13) have negative real parts.

Proof. We refer the readers to [11] for the proof of this lemma. �

Lemma 4.2 Let τ > 0 and A3 > 0.

(i) If A2 > 0 and there exists the real number θ1 > 0 such that P (θ1) < 0,
then equation (18) has a positive root.

(ii) If A2
1 − 3A2 < 0, then equation (18) has no positive roots.

Proof. We refer the readers to [11] for the proof of this lemma. �

From, Lemma 4.1 and Lemma 4.2 (ii), we conclude that there is no a value
of τ > 0 such that Re(λ) = 0. So, all roots of Eq. (13) have negative real parts.
Hence, we obtain Theorem 4.3.
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Theorem 4.3 Suppose that the endemic equilibrium E∗ exists and the condi-
tions

Cαβ

γ2(ϕ − b)
> 1, (20)

and
A2

1 − 3A2 < 0 (21)

are satisfied. Then, the endemic equilibrium E∗ is locally asymptotically stable
for τ ≥ 0.

Proof. For τ = 0, by Theorem 4.2, all solutions of (13) have negative real
parts. By Lemma 4.1 and Lemma 4.2 (ii), we conclude that all roots of (13)
have negative real parts for τ ≥ 0. Therefore, the endemic equilibrium E∗ is
locally asymptotically stable for τ ≥ 0.

5. Numerical simulations

In this section, we carry out numerical simulations of the model system to
show the dynamic behavior of delayed model system (1) by using DDE23 in
MATLAB which is in agreement of our theoretical predictions.

In Figure 1, we show a computer simulation of the model system (2) subject
to initial values S(0) = 0.4, I(0) = 1.29, G(0) = 0.82 with C = 0.4, bss =
0.3, bis = 0.2, bii = 0.3, di = 0.9, ds = 0.6, α = 0.1, β = 0.4, γ = 0.1 and
μ = 0.120808. For τ = 1, we have ω = 0.3 > 0, ϕ−bis−α = 0.3 > 0, γϕ− Cαβ

ω
=

0.00666667 > 0 satisfying the conditions in Theorem 4.1. So, the disease free
equilibrium point E0(4

3 , 0, 0) is locally asymptotically stable, as seen in this
figure where the time series of S converges to 1.33, and that of I vanishes to
0, while the solution trajectory seen projected onto the phase planes tends to
the equilibrium point E0 as time passes.

In Figure 2, we show a computer simulation of the model system (2) sub-
ject to initial values S(0) = 0.4, I(0) = 1.29, G(0) = 0.82 with C = 1, bss =
0.33bis = 0.2, bii = 0.3, di = 0.9, ds = 0.6, α = 0.1, β = 0.4, γ = 0.1 and
μ = 0.120808.

For τ = 1, we have ϕ − bis − α = 0.3 > 0, Cαβe−μτ − γϕω = 0.0174481 >
0, ω = 0.3 > 0, A1 = 0.121735 > 0, A2 = 0.005169 > 0, A3 = 3.23695 ×
10−4 > 0 and A2

1 − 3A2 = −6.8747986e − 04 < 0 satisfying the conditions
in Theorem 4.3. So, E∗ is locally asymptotically stable for τ ≥ 0, as seen in
Figure 2 where the time series of all state variables converge to their respective
equilibrium values, while the solution trajectory seen projected onto the phase
planes tends to the equilibrium point E∗ as time passes.

Now, we have shown that, for equation (18) to have no positive solutions
for τ ≥ 0, we need

A2
1 − 3A2 < 0



P. Matkhao, Y. Lenbury, C. Rattanakul and N. Chuchalerm. 41

in (i). In this case there is no τ > 0 such that λ(τ ) = 0, which means the
equilibrium point is stable for all τ ≥ 0. However, if (i) does not hold, it does
not mean that the equilibrium point must be unstable for all τ > 0. It simply
means that the equilibrium point may not be stable for all τ > 0. That is, there
can be a τ0 > 0 such that λ(τ0) > 0, but λ(τ ) < 0 for some τ < τ0. This is what
happens in Figure 3 where, even though A2

1 − 3A2 > 0 here, the equilibrium
point is still stable for this value of τ that we used because τ is still less than
τ0.

Figure 1: Numrical simulation of the model system (2) subject to initial values
S(0) = 0.4, I(0) = 1.29, G(0) = 0.82 with C = 0.4, bss = 0.3, bis = 0.2, bii =
0.3, di = 0.9, ds = 0.6, α = 0.1, β = 0.4, γ = 0.1, μ = 0.120808. and τ = 1. (a)
Time series of S()t, I(t) and G(t). (b) Solution trajectory projected onto the
(S, I) plane. (c) Three dimensional phase portrait of S()t, I(t) and G(t). The
equilibrium point E0 is stable here.
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Figure 2: Numrical simulation of the model system (2) subject to initial values
S(0) = 0.4, I(0) = 1.29, G(0) = 0.82 with C = 1, bss = 0.33, bis = 0.2, bii =
0.3, di = 0.9, ds = 0.6, α = 0.1, β = 0.4, γ = 0.1, μ = 0.120808 and τ = 1. (a)
Time series of S()t, I(t) and G(t). (b) Solution trajectory projected onto the
(S, I) plane. (c) Three dimensional phase portrait of S()t, I(t) and G(t). The
equilibrium point E∗ is stable here.

In Figure 3, we show a computer simulation of the model system (2) sub-
ject to initial values S(0) = 0.4, I(0) = 1.29, G(0) = 0.82 with C = 1, bss =
0.3, bis = 0.2, bii = 0.3, di = 0.9, ds = 0.1, α = 0.1, β = 0.4, γ = 0.1 and
μ = 0.1208008.

For τ = 1, we have A2
1−3A2 = 4.17978259 which is non-negative. However,

E∗ is seen in this figure to be stable still for τ = 1.
Since the condition A2

1 − 3A2 < 0 is not satisfied, we expect that the E∗
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Figure 3: Numrical simulation of the model system (2) subject to initial values
S(0) = 0.4, I(0) = 1.29, G(0) = 0.82 with C = 1, bss = 0.3, bis = 0.2, bii =
0.3, di = 0.9, ds = 0.1, α = 0.1, β = 0.4, γ = 0.1, μ = 0.1208008 and τ = 1. (a)
Time series of S()t, I(t) and G(t). (b) Solution trajectory projected onto the
(S, I) plane. (c) Three dimensional phase portrait of S()t, I(t) and G(t). The
equilibrium point E∗ is still stable here.
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Figure 4: Numrical simulation of the model system (2) subject to initial values
S(0) = 0.4, I(0) = 1.29, G(0) = 0.82 with S(0) = 1.7, I(0) = 4, 5, G(0) =
4.5, C = 1, bss = 0.3, bis = 0.2, bii = 0.3, di = 0.9, ds = 0.1, α = 0.1, β =
0.4, γ = 0.1, μ = 0.120808 and τ = 1.6. (a) Time series of S()t, I(t) and G(t).
(b) Solution trajectory projected onto the (S, I) plane. (c) Three dimensional
phase portrait of S()t, I(t) and G(t). The equilibrium point E∗ is unstable and
the solution trajectory is seen here to tend to a limit cycle.
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cannot be stable for all τ > 0. We therefore increase τ until it passes the critical
value τ0 at which point we expect E∗ to become unstable. This is shown in
Figure 4, where S(0) = 1.7, I(0) = 4, 5, G(0) = 4.5, C = 1, bss = 0.3, bis =
0.2, bii = 0.3, di = 0.9, ds = 0.1, α = 0.1, β = 0.4, γ = 0.1 and μ = 0.120808.
Here τ = 1.6, large enough for E∗ to become unstable and bifurcate into a
limit cycle, giving rise to a periodic solution as seen in Figure 4.

6. Discussion and conclusion

In this work, we study and investigate the behavior of the solution to a model
of the PRRS infection with time delay incorporating infectiousness decay. We
proved, that for the disease-free equilibrium E0 to be locally asymptotically
stable for all τ ≥ 0, we need γϕ > Cαβ

ω and ds − bss = ω > 0 which means that
ϕ must be big enough, that is the death rate of infected swine is sufficiently
bigger than its birth rate, or the infection constant γ is large enough so that
infectiousness decreases fast enough. And for the endemic equilibrium E∗ to be
locally asymptotically stable for τ ≥ 0, we need Cαβ

γ2(ϕ−b) > 1 and A2
1 − 3A2 < 0

which means that the constant flow of swine C must be large enough.

Moreover, we observe that the delay in infection incidences τ is the critical
parameter which delineates different dynamical behavior in the model system.
In the report of Charpin et al. [8], a delay of up to 10 days is observed before
infectiousness reaches a peak and then decreases in an exponential fashion.
Such delay can play a crucial role in whether the disease is endemic or be
controllable.

Another parameter that plays a crucial role in differentiating dynamical be-
havior that could be exhibited by the system is γ appearing in the exponential
factor in the expression G(t), which actually controls how fast the infectious-
ness decays with time. The bigger γ is, the faster the infected swine become
ineffective in infecting the susceptible population. When γ large enough so that
γ > Cαβ

ωϕ
such that inequality (4) is satisfied, the population can be disease free,

under suitable conditions on other parametric values. We in fact observe that
the time series of G(t) in Figure 1 shows an exponentially decreasing structure
that is close to the data reported by Charpin et al. [6]. Theoretically, this
suggests that, in such a situation, the spread of PRRS infection may be put
under control if appropriate measures are taken, such as making sure that the
specific death rate of infective swine is higher than the specific birth rate if
the same thing holds for the susceptible swine population. In Figure 2, on the
other hand, G(t) does not decrease very sharply, so that the disease is endemic
in this case.

Such insights gained from model construction and analysis can be extremely
valuable in deciding on the most suitable intervention strategies.
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