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Abstract

The aim of this paper is to study algebraic structure of each cyclic
and negacyclic code of length 28 over F7 +uF7. Moreover, the number of
codewords and the dual of each cyclic and negacyclic code are introduced.

1. Introduction

The class of constacyclic codes plays a very significant role in the theory of error-
correcting codes as they are a direct generalization of the important family of
cyclic codes. The most important class of these codes is the class of cyclic
codes, which have been well studied since the late 1950’s. Constacyclic codes
also have practical applications as they can be efficiently encoded with simple
shift registers, they have rich algebraic structures for efficient error detection
and correction, which explains their preferred role in engineering.

Given a nonzero element λ of the field F , λ-constacyclic codes of length
n over F are classified as the ideals 〈g(X)〉 of the quotient ring F [X]/〈Xn −
λ〉, where the generator polynomial g(X) is the unique monic polynimial of
minimum degree in the code, which is a divisor of Xn − λ. However, most
of the research is concentrated on the situation when the code length n is
relatively prime to the characteristic of the field F . This condition implies that
every root of Xn −λ is a simple root in an extension field of F , which provides
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a description of all such roots, and hence, λ-constacyclic codes, by cyclotomic
cosets modulo n.

The case when the code length n is divisible by the characteristic p of the
field yields the so-called repeated-root codes, which were first studied since
1967 by Berman [5], and then in the 1970’s and 1980’s by several authors such
as Massey et al. [28], Falkner et al. [21], Roth and Seroussi [34]. However,
repeated-root codes were investigated in the most generality in the 1990’s by
Castagnoli et al. [11], and van Lint [39], where they showed that repeated-root
cyclic codes have a concatenated construction, and are asymptotically bad.
Nevertheless, such codes are optimal in a few cases, that motivates researchers
to further study this class of codes (see, for example, [31, 37, 41]).

Recently, Dinh, in a series of papers ([15], [16], [17]), determined the gener-
ator polynomials of all constacyclic codes of lengths 2ps, 3ps and 6ps over finite
fields Fpm . The class of finite rings of the form Fpm + uFpm has been widely
used as alphabets of certain constacyclic codes. For example, the structure of
F2 + uF2 is interesting, it is lying between F4 and Z4 in the sense that it is
additively analogous to F4, and multiplicatively analogous to Z4. It has been
studied by a lot of researchers (see, for example, [2, 3, 8, 24, 36, 38]). The
classification of codes plays an important role in studying their structures, but
in general, it is very difficult. Only some codes of certain lengths over certain
finite fields or finite chain rings are classified. All constacyclic codes of length
2s over the Galois extension rings of F2 + uF2 are classified and their detailed
structures are also established in [13]. Then in 2010 [14], we classified and gave
the detailed structures of all constacyclic codes of length ps over Fpm + uFpm ;
and in 2012 [15], we provided that for all constacyclic codes of length 2ps over
the finite field Fpm .

The rest of the paper is arranged as follows. After presenting preliminary
concepts and results in Section 2, we proceed by first obtaining the algebraic
structures of all cyclic and negacyclic codes of length 28 over F7+uF7 in Section
3, where such negacyclic codes are classified by categorizing the ideals of the
ring (F7+uF7)[x]

〈x28−1〉 and (F7+uF7)[x]
〈x28+1〉 , respectively. The detailed structures of ideals

are provided. We also establish the number of codewords, and the dual of each
cyclic and negacyclic code.

2. Preliminaries

An ideal I of a ring R is called principal if it is generated by one element. A
ring R is a principal ideal ring if its ideals are principal. R is called a local ring
if R/radR is a division ring, or equivalently, if R has a unique maximal right
(left) ideal. Furthermore, a ring R is called a chain ring if the set of all right
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(left) ideals of R is linearly ordered under set-theoretic inclusion. While we will
only consider finite commutative rings in this paper, it is worth noting that a
finite chain ring need not be commutative. The smallest noncommutative chain
ring has order 16 [26, 29], that can be represented as R = F4 ⊕ F4, where the
operations +, · are defined as

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),

(a1, b1) · (a2, b2) = (a1a2, a1b2 + b1a
2
2).

The following equivalent conditions are known for the class of finite com-
mutative rings (cf. [19, Proposition 2.1]).

Proposition 2.1. Let R be a finite commutative ring, then the following con-
ditions are equivalent:

(i) R is a local ring and the maximal ideal M of R is principal, i.e., M = 〈γ〉
for some γ ∈ R,

(ii) R is a local principal ideal ring,
(iii) R is a chain ring whose ideals are 〈γi〉, 0 ≤ i ≤ �, where � is the

nilpotency of γ.

Let R be a finite ring, a code C of length n over R is a nonempty subset of
Rn, and the ring R is refered to as the alphabet of the code. If this subset is,
in addition, a R-submodule of Rn, then C is called linear. For a unit λ of R,
the λ-constacyclic (λ-twisted) shift τλ on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C, i.e., if C is closed
under the the λ-constacyclic shift τλ. In case λ = 1, those λ-constacyclic codes
are called cyclic codes, and when λ = −1, such λ-constacyclic codes are called
negacyclic codes.

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its poly-
nomial representation c(x) = c0 + c1x + · · ·+ cn−1x

n−1, and the code C is in
turn identified with the set of all polynomial representations of its codewords.
Then in the ring R[x]

〈xn−λ〉 , xc(x) corresponds to a λ-constacyclic shift of c(x).
From that, the following fact is well known (cf. [25, 27]) and straightforward:

Proposition 2.2. A linear code C of length n is λ-constacyclic over R if and
only if C is an ideal of R[x]

〈xn−λ〉 .

Given n-tuples x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn, their
inner product or dot product is defined as usual

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1,
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evaluated in R. Two n-tuples x, y are called orthogonal if x · y = 0. For a
linear code C over R, its dual code C⊥ is the set of n-tuples over R that are
orthogonal to all codewords of C, i.e.,

C⊥ = {x | x · y = 0, ∀y ∈ C}.
A code C is called self-orthogonal if C ⊆ C⊥, and it is called self-dual if C = C⊥.
The following result is well known (cf. [12, 25, 27, 33]).

Proposition 2.3. Let p be a prime and R be a finite chain ring of size pα.
The number of codewords in any linear code C of length n over R is pk, for
some integer k ∈ {0, 1, . . . , αn}. Moreover, the dual code C⊥ has pl codewords,
where k + l = αn, i.e., |C| · |C⊥| = |R|n.

In general, we have the following implication of the dual of a λ-constacyclic
code.

Proposition 2.4. The dual of a λ-constacyclic code is a λ−1-constacyclic code.

For any odd prime p, we will consider negacycic codes of length 2ps over the
ring R = Fpm +uFpm . The ring R consists of all pm-ary polynomials of degree
0 and 1 in indeterminate u, it is closed under pm-ary polynomial addition and
multiplication modulo u2. Thus, R = Fpm [u]

〈u2〉 = {a + ub | a, b ∈ Fpm} is a local
ring with maximal ideal uFpm , and hence, it is a chain ring.

Hereafter, let

R2ps =
R[x]

〈x2ps + 1〉 .

Then, by Proposition 2.2, negacyclic codes of length 2ps over R are ideals of
R2ps .

Proposition 2.5. Let

a(x) = a0 + a1x + · · ·+ an−1x
n−1

and
b(x) = b0 + b1x + · · ·+ bn−1x

n−1.

Then a(x)b(x) = 0 in R if and only if (a0, a1, . . . , an−1) is orthogonal to
(bn−1, bn−2, . . . , b0) and all its negacyclic shifts.

Definition 2.6. If
f(x) = a0 + a1x + · · ·+ arx

r,

then the reciprocal of f(x) is the polynomial

f∗(x) = ar + ar−1x + ar−2x
2 + · · ·+ a0x

r.
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Symbolically, f∗(x) can be expressed by f∗(x) = xrf( 1
x
). If I is an ideal of

R2ps , then I∗ = {f∗(x) : f(x) ∈ I} is also an ideal.

Definition 2.7. Let I be an ideal of R2ps . We define A(I) = {g(x)|f(x)g(x) =
0, ∀f(x) ∈ I}. Then A(I) is called the annihilator of I, which is also an ideal
of R2ps .

From the above definition we can see that if C is a constacyclic code of
length n over R with associated ideal I, then the associated ideal of C⊥ is
A(I)∗. The following two lemmas are easy to prove and are needed in Section
4.

Lemma 2.8. a) If deg f ≥ deg g, then

(f(x) + g(x))∗ = f∗(x) + xdeg f−deg gg∗(x).

b) (f(x)g(x))∗ = f∗(x)g∗(x).

Lemma 2.9. Let I = 〈f(x), ug(x)〉, then I∗ = {h∗(x)|h(x) ∈ I} = 〈f∗(x), ug∗(x)〉.
In [14], all cyclic codes of length ps over R are classified into 4 types, and the

detailed structures of each type are provided. More importantly, a one-to-one
correspondence between cyclic and γ-constacyclic codes of length ps over R is
built via a the ring isomorphism, which enables to apply all results about cyclic
codes to γ-constacyclic codes over R. In the next two theorems, following [14,
Section 6], we list the classification and structures of all γ-constacyclic codes
of length ps over R, as well as the number of codewords in each such code.

Since γ is a nonzero element of the field Fpm , γ−pm

= γ−1. By the Division
Algorithm, there exist nonnegative integers γq , γr such that s = γqm+γr , and
0 ≤ γr ≤ m − 1. Let γ0 = γ−p(γq+1)m−s

= γ−pm−γr . Then γps

0 = γ−p(γq+1)m
=

γ−1.

3. Cyclic and negacyclic codes of length 28 over

F7 + uF7

We begin this section with a remark as follows.

Proposition 3.1. Any non-zero polynomial ax + b ∈ F7[x] is invertible in
R[x]

〈x28+1〉 .

Proof. If a = 0, then b 
= 0. It is clear that b is invertible in R[x]
〈x28+1〉 . In R,

we have

(x + b)7(x − b)7(x2 + b2)7 = (x4 − b4)7 = x28 − b28 = −1 − b28.



52 Cyclic and Negacyclic codes of length 28 over F7 + uF7

Since −1 is not a square in F7,−1 − b28 is invertible and

(ax+b)−1 = a−1(x+a−1b)−1 = a−1(x+a−1b)6(x−a−1b)7(x2+a−2b2)7(−1−b28).

It follows that ax + b is a unit in R[x]
〈x28+1〉 . �

We can see that 2 is a quadratic residue modulo 7. This means that there
exists α ∈ F7 such that 2 = α2. From this,

x4 +1 = (x4 +2x2 +1)−2x2 = (x2 +1)2 − (αx)2 = (x2 +αx+1)(x2 −αx+1).

In [20], it is well-known that x2 + αx + 1 and x2 − αx + 1 are irreducible over
F7. Therefore, x28 + 1 can be expressed as

x28 + 1 = (x2 + αx + 1)7(x2 − αx + 1)7.

Let δ ∈ {1,−1}. Then the following lemma is useful.

Lemma 3.2.
The polynomial x2 + δαx + 1 is irreducible over R, where α2 = 2 ∈ F7.

Proof. Suppose that x2 + δαx + 1 is reducible over R. Then there exists an
element λ such that λ2 + δαλ+1 = 0, where λ = λ1 +uλ2, λ1, λ2 ∈ Fpm . Since
λ2 + δαλ + 1 = 0, we can see that λ2

1 + δαλ + 1 = 0 and 2λ1λ2 + δαλ2 = 0.
This shows that λ2

1 + δαλ1 + 1 = 0. From 2λ1λ2 + δαλ2 = 0, it is easy to see
that λ2 = 0 or λ1 = −δα

2 . If λ2 = 0, then x2 + δαx + 1 is reducible over F7,

which is a contradiction. If λ1 = −δα
2 , then λ2

1 + δαλ + 1 
= 0. This contradicts
with assumption, proving that x2 + δαx + 1 is irreducible over R.

Negacyclic codes and their dual codes of length 28 over R are determined
as follows.

Theorem 3.3. Let C be a negacyclic code of length 28 over R.

(i) Negacyclic codes of length 28 over R can be expressed as C = C1 ⊕ C2,

where C1 is an ideal of the ring R[x]
〈(x2+αx+1)7〉 and C2 is an ideal of the

ring R[x]
〈(x2−αx+1)7〉 ,

(ii) |C| = |C1||C2|,
(iii) The dual code C⊥ of C is given by C⊥ = C⊥

1 ⊕ C⊥
2 ,

(iv) C⊥
i = ann(Ci)� for i = 1, 2. Moreover, C⊥

1 is an ideal of R[x]
〈(x2−αx+1)7〉 ,

and C⊥
2 is an ideal of R[x]

〈(x2+αx+1)7〉 .

Proof.
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(i) From the isomorphism

R[x]
〈x28 + 1〉

∼= R[x]
〈(x2 + αx + 1)7〉 ⊕

R[x]
〈(x2 − αx + 1)7〉 ,

we can see that every negacyclic code of length 28 over R can be expressed
as C = C1 ⊕ C2, where C1 is an ideal of the ring R[x]

〈(x2+αx+1)7〉 and C2 is

an ideal of the ring R[x]
〈(x2−αx+1)7〉 .

(ii) It is routine to check that |C| = |C1||C2|.

To investigate negacyclic codes and their duals of length 28 over R, we need
to determine all ideals of the rings R[x]

〈(x2+δαx+1)7〉 and R[x]
〈(x2+δβx−1)7〉 . We get an

important lemma.

Lemma 3.4. Any non-zero polynomial cx+d ∈ F7[x] is invertible in R[x]
〈(x2+δαx+1)7〉

and R[x]
〈(x2+δβx−1)7〉 .

Proof. If c = 0, then d 
= 0. This implies that d is invertible in R[x]
〈(x2+δαx+1)7〉 .

If c 
= 0, we have

(cx + d)−1 = c(x + c−1d)−1

= c(x + c−1d)6(x − c−1d + δα)7(x + c−1d)−7(x − c−1d + δα)−7

= c−1(x + c−1d)6(x − c−1d + δα)7(x2 + δαx − (c−1d)2) + δα(c−1d)−7

= c(x + c−1d)6(x − c−1d + δα)6((−1)7 − (c−1d)14 + (δαc−1d)7)−1

= −c(x + c−1d)6(x − c−1d + δα)7(1 + (c−1d)2 − (δα)c−1d)−7.

(1)

It is clear that 1 + (c−1d)2 − (δα)c−1d is non-zero for all c−1d ∈ F7. Hence,
cx + d is invertible in R[x]

〈(x2+δαx+1)7〉 . Similarly, we also prove that cx + d is

invertible in R[x]
〈(x2+δβx−1)7〉 . �

Lemma 3.5.
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(i) Let f(x) ∈ R[x]
〈(x2+δαx+1)7〉 . Then f(x) can be uniquely expressed as

f(x) =
ps−1∑
i=0

(c0ix + d0i)(x2 + δαx + 1)i + u

ps−1∑
i=0

(c1ix + d1i)(x2 + δαx + 1)

= c00x + d00 + (x2 + δαx + 1)
6∑

i=1

(c00x + d0i)(x2 + δαx + 1)i−1+

+ u

6∑
i=0

(c1ix + d1i)(x2 + δαx + 1)i,

(2)

where c0i, d0i,c1i, d1i ∈ Fpm for 0 ≤ i ≤ ps − 1. Moreover, f(x) is non-
invertible if and only if c00 = d00 = 0.

(ii) Let g(x) ∈ R[x]
〈(x2+δβx−1)ps 〉 . Then g(x) can be uniquely expressed as

g(x) =
6∑

i=0

(c′0ix + d′
0i)(x

2 + δβx − 1)i + u

ps−1∑
i=0

(c′1ix + d′
1i)(x

2 + δβx − 1)

= c′00x + d′
00 + (x2 + δβx − 1)

6∑
i=1

(c′00x + d′
0i)(x

2 + δβx − 1)i−1

+ u

6∑
i=0

(c′1ix + d′
1i)(x

2 + δβx − 1)i,

(3)

where c′0i, d
′
0i, c

′
1i, d

′
1i for 0 ≤ i ≤ 6. Moreover, g(x) is non-invertible if

and only if c′00 = d′
00 = 0.

Proof. The representation of f(x) follows from the fact that it can be viewed
as a polynomial of degree less than 6 over R. We have (x2 + δαx +1)6 = 0 and
u2 = 0 in R[x]

〈(x2+δαx+1)6〉 . This shows that (x2 +δαx+1)6 are nilpotent elements

of R[x]
〈(x2+δαx+1)6〉 . Hence, f(x) is non-invertible if and only if c00 = d00 = 0 by

Lemma 3.4, proving part (i).
Part (ii) can be proved by using in a similar way as in the proof of part (i). �

Applying Lemma 3.4 and 3.5, we give some characterizations of the ring
R[x]

〈(x2+δαx+1)7〉 and R[x]
〈(x2+δβx−1)7〉 as follows.

Theorem 3.6.
The polynomial R[x]

〈(x2+δαx+1)7〉 is a local ring with maximal ideal 〈x2 +δαx+
1, u〉 but not a chain ring. In particular, 〈x2 + δαx + 1〉 is a nilpotent element
of R[x]

〈(x2+δαx+1)7〉 with the nilpotency index 7.
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Proof. By using Lemma 3.4, we see that all the non-invertible of R[x]
〈(x2+δαx+1)7〉

are ideals 〈x2+δαx+1, u〉. It is equivalent to say that R[x]
〈(x2+δαx+1)7〉 is a local ring

with the maximal ideal 〈x2+δαx+1, u〉. It is easy to see that u 
∈ 〈x2+δαx+1〉.
Obviously, x2 + δαx + 1 
∈ 〈u〉. Hence, 〈x2 + δαx + 1, u〉 is not a principal ideal
of R[x]

〈(x2+δαx+1)7〉 , implying that R[x]
〈(x2+δαx+1)7〉 is not a chain ring according to

Proposition 2.1.

We now determine all ideals of R[x]
〈(x2+δαx+1)7〉 and R[x]

〈(x2+δβx−1)7〉 in the fol-
lowing theorem.

Theorem 3.7. The all ideals in R[x]
〈(x2+δαx+1)7〉 are listed as follows:

• Type 1: (trivial ideals)
〈0〉, 〈1〉.

• Type 2: (principal ideals with nonmonic polynomial generators)

〈u(x2 + δαx + 1)i〉,

where 0 ≤ i ≤ 6.

• Type 3: (principal ideals with monic polynomial generators)

〈(x2 + δαx + 1)i + u(x2 + δαx + 1)th(x)〉,

where 1 ≤ i ≤ 6, 0 ≤ t < i, and either h(x) is 0 or h(x) is a unit
which can be represented as h(x) =

∑
j(h0jx + h1j)(x2 + δαx + 1)j , with

h0j, h1j ∈ F7, and h00x + h10 
= 0.

• Type 4: (nonprincipal ideals)

〈(x2 + δαx + 1)i + u

ω−1∑
j=0

(cjx + dj)(x2 + δαx + 1)j, u(x2 + δαx + 1)ω〉,

where 1 ≤ i ≤ 6, cj, dj ∈ F7, and ω < T , where T is the smallest integer
such that

u(x2 + δαx + 1)T ∈ 〈(x2 + δαx + 1)i + u

i−1∑
j=0

(cjx + dj)(x2 + δαx + 1)j〉;

or equivalently,

〈(x2 + δαx + 1)i + u(x2 + δαx + 1)th(x), u(x2 + δαx + 1)ω〉,

with h(x) as in Type 3, and deg h(x) ≤ ω − t − 1.
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Proof. Firstly, it is easy to see that ideals of Type 1 are trivial ideals. Let
I be an arbitrary nontrivial ideal of R[x]

〈(x2+δαx+1)7〉 . We proceed by establishing
all possible forms that ideal I can have.

Case 1. I ⊆ 〈u〉 : Suppose that c(x) ∈ I. Then v(x) must be of the form
u

∑6
i=0(c1ix + d1i)(x2 + δαx + 1)i, where c1i, d1i ∈ F7. This implies that there

exists an element a ∈ I that has the smallest k such that c1kx+d1k 
= 0. Hence
each element c(x) ∈ I have the form c(x) = u(x2 + δαx + 1)k

∑6
i=k(c1ix +

d1i)(x2 + δαx+1)i−k, implying that I ⊆ 〈u(x2 + δαx+1)k〉. However, we have
a ∈ I with

a = u(x2 + δαx + 1)k
6∑

i=k

(c1ix + d1i)(x2 + δαx + 1)i−k

= u(x2 + δαx + 1)k

[
c1kx + d1k +

ps−1∑
i=k+1

(c1ix + d1i)(x2 + δαx + 1)i−k

]
.

From c1kx + d1k 
= 0, we can see that c1kx + d1k +
∑ps−1

i=k+1(c1ix + d1i)(x2 +
δαx + 1)i−k is invertible, proving that u(x2 + δαx + 1)k ∈ I. Therefore,
I = 〈u(x2 + δαx+1)k〉, which means that the nontrivial ideals of R[x]

〈(x2+δαx+1)7〉
contained in 〈u〉 are 〈u(x2 + δαx + 1)k〉, 0 ≤ k ≤ 6, which are ideals of Type 2,
as desired.

Case 2. I 
⊆ 〈u〉 : Let Iu denote the set of elements in I which are reduced
modulo u. Note that Iu is a nonzero ideal of the ring F7[x]

〈(x2+δαx+1)7〉 , which is
a finite chain ring with ideals 〈(x2 + δαx + 1)j〉, where 0 ≤ j ≤ 7, according
to [15, Theorem 3.2]. Then there is an integer i ∈ {0, 1, . . . , 6} such that
Iu = 〈(x2 + δαx + 1)i〉 ⊆ F7[x]

〈x2+δαx+1〉 . This follows that there exists an element

c(x) =

ps−1∑
j=0

(c0jx+d0j )(x2+δαx+1)j +u

6∑
j=0

(c1jx+d1j )(x2+δαx+1)j ∈ R[x]

〈(x2 + δαx + 1)7〉,

where c0j, c1j, d0j, d1j ∈ F7, such that (x2 + δαx + 1)i + uc(x) ∈ I. Since

(x2 +δαx+1)i +uc(x) = (x2 +δαx+1)i +u

ps−1∑
j=0

(c0jx+d0j)(x2 +δαx+1)j ∈ I,

and u(x2 + δαx + 1)k = u[(x2 + δαx + 1)i + uc(x)](x2 + δαx + 1)k−i ∈ I with
i ≤ k ≤ 6, we have (x2 + δαx + 1)i + u

∑i−1
j=0(c0jx + d0j)(x2 + δαx + 1)j ∈ I.

We now divided into two subcases.
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Case 2a. I = 〈(x2 + δαx + 1)i + u
∑i−1

j=0(cjx + dj)(x2 + δαx + 1)j〉, then I
can be expressed as

I = 〈(x2 + δαx + 1)i + u(x2 + δαx + 1)th(x)〉,

where h(x) is 0 or a unit. If h(x) is a unit, then h(x) can be represented as
h(x) =

∑
j(h0jx+h1j)(x2 +δαx+1)j , with h0j, h1j ∈ Fpm and h00x+h10 
= 0,

it follows that I is of Type 3.

Case 2b. 〈(x2 + δαx + 1)i + u
∑i−1

j=0(c0jx + d0j)(x2 + δαx + 1)j〉 � I. Then
there exists f(x) ∈ I \ 〈(x2 + δαx + 1)i + u

∑i−1
j=0(c0jx + d0j)(x2 + δαx + 1)j〉,

hence there is a polynomial g(x) ∈ R[x]
〈(x2+δαx+1)ps 〉 such that

0 
= h(x) = f(x)−g(x)

⎡
⎣(x2 + δαx + 1)i + u

i−1∑
j=0

(c0jx + d0j)(x2 + δαx + 1)j

⎤
⎦ ∈ I,

showing that h(x) can be expressed as

h(x) =
i−1∑
j=0

(h0jx + h′
0j)(x

2 + δαx + 1)j + u
i−1∑
j=0

(h1jx + h′
1j)(x

2 + δαx + 1)j,

where h0j, h
′
0j, h1j, h

′
1j ∈ Fpm . Hence, h(x) reduced modulo u is in Iu = 〈(x2 +

δαx+1)i〉, and thus, h0j, h
′
0j = 0 for all 0 ≤ j ≤ i−1, i.e., h(x) = u

∑i−1
j=0(h1jx+

h′
1j)(x2 + δαx + 1)j. Since h(x) 
= 0, there exists a smallest integer k, 0 ≤ k ≤

i − 1, such that h1kx + h′
1k 
= 0. Then

h(x) = u
∑i−1

j=k(h1jx + h′
1j)(x

2 + δαx + 1)j

= u(x2+δαx+1)k
[
h1kx + h′

1k +
∑i−1

j=k+1(h1jx + h′
1j)(x

2 + δαx + 1)j−k
]
.

As h1kx + h′
1k 
= 0, h1kx + h′

1k +
∑i−1

j=k+1(h1jx + h′
1j)(x

2 + δαx + 1)j−k is an

invertible element in R[x]
〈(x2+δαx+1)ps 〉 , hence,

u(x2+δαx+1)k = (h1kx+h′
1k+

i−1∑
j=k+1

(h1jx+h′
1j)(x

2+δαx+1)j−k)−1h(x) ∈ I.

It has been shown that for any f(x) ∈ I \ 〈(x2 + δαx +1)i +u
∑i−1

j=0(c0jx +
d0j)(x2 + δαx + 1)j〉, there is an integer k with 0 ≤ k ≤ i − 1 such that
u(x2+δαx+1)k ∈ I. Let ω = min{k|f(x) ∈ I\〈(x2+δαx+1)i+u

∑i−1
j=0(c0jx+

d0j)(x2 + δαx+ 1)j〉}. Then 〈(x2 + δαx +1)i + u
∑i−1

j=0(c0jx + d0j)(x2 + δαx +
1)j, u(x2 + δαx + 1)ω〉 ⊆ I. In addition, by the above construction, for any
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f(x) ∈ I, there exists a polynomial g(x) ∈ I satisfying

f(x)−g(x)[(x2+δαx+1)i+u

i−1∑
j=0

(c0jx+d0j)(x2+δαx+1)j] ∈ 〈u(x2+δαx+1)ω〉,

implying that f(x) ∈ 〈(x2+δαx+1)i+u
∑i−1

j=0(c0jx+d0j)(x2+δαx+1)j , u(x2+
δαx + 1)ω〉. Thus,

I = 〈(x2 + δαx + 1)i + u

i−1∑
j=0

(c0jx + d0j)(x2 + δαx + 1)j, u(x2 + δαx + 1)ω〉

= 〈(x2 + δαx + 1)i + u

ω−1∑
j=0

(c0jx + d0j)(x2 + δαx + 1)j, u(x2 + δαx + 1)ω〉.

Let T be the smallest integer such that u(x2 + δαx + 1)T ∈ 〈(x2 + δαx + 1)i +
u

∑i−1
j=0(cjx + dj)(x2 + δαx + 1)j〉. If ω ≥ T , then

I = 〈(x2 + δαx + 1)i + u
∑ω−1

j=0 (cjx + dj)(x2 + δαx + 1)j , u(x2 + δαx + 1)ω〉
= 〈(x2 + δαx + 1)i + u

∑i−1
j=0(cjx + dj)(x2 + δαx + 1)j〉.

This is a contradiction with the assumption of this case. This follows that
ω < T , proving that I is of Type 4. �

We also determine all cyclic codes of length 28 over F7 + uF7.

Remark 3.8. We can express the factorization of x28 − 1 into product of
unique monic irreducible factors as follows:

x28 − 1 = (x4 − 1)7 = (x7 − 1)(x7 + 1)(x14 + 1).

By Chinese remainder theorem, we can see that

R[x]
〈x28 − 1〉

∼= R[x]
〈x28 − 1〉 ⊕

R[x]
〈x7 + 1〉 ⊕

R[x]
〈x14 + 1〉 .

From this isomorphism, using arguments similar to those in the proof of Theo-
rem 3.1 and 3.2, we can determine the algebraic structures of all cyclic codes of
length 28 over R. Moreover, the number of codewords in each cyclic code are
provided. Similar to the Theorem 3.3, we also give some self-dual cyclic codes
of length 28 over R.

Theorem 3.9. Let C be a cyclic code of length 28 over R. Then we have

(i) C = C1 ⊕ C2 ⊕ C3, where C1, C2, C3 are ideals of the rings R[x]
〈x7−1〉 ,

R[x]
〈x7+1〉 ,

R[x]
〈x14+1〉 , respectively.

(ii) |C| = |C1||C2||C3|.
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(iii) The dual code C⊥ of C is computed by C⊥ = C⊥
1 ⊕ C⊥

2 ⊕ C⊥
3 , where Ci

is the dual code of Ci (i = 1, 2, 3).

Theorem 3.10. Let C = C1 ⊕ C2 ⊕ C3 be a cyclic code of length 28 over
R, where C1, C2, C3 are ideals of the rings R[x]

〈x7−1〉 ,
R[x]

〈x7+1〉 ,
R[x]

〈x14+1〉 , respectively.
Then the following hold:

(i) If C1 = 〈u〉, C2 = 〈u〉 and C3 = 〈u〉, then C = C1 ⊕ C2 ⊕ C3 = 〈u〉 is a
self-dual cyclic code of length 28 over R.

(ii) If C1 = 〈(x − 1)i, u(x − 1)7−i〉, C2 = 〈(x + 1)j, u(x + 1)7−j〉 and C3 =
〈(x2 +1)k, u(x2 +1)7−k〉, then C = C1⊕C2⊕C3 is a self-dual cyclic code
of length 28 over R, where 1 ≤ i, j, k < 7.
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[32] G. Norton and A. Sălăgean-Mandache, On the structure of linear cyclic codes over
finite chain rings, Appl. Algebra Engrg. Comm. Comput. 10 (2000), 489–506.

[33] V. Pless and W.C. Huffman, Handbook of coding theory, Elsevier, Amsterdam, 1998.

[34] R.M. Roth and G. Seroussi, On cyclic MDS codes of length q over GF(q), IEEE Trans.
Inform. Theory 32 (1986), 284-285.
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