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Abstract

A classification of all constacyclic codes of length 100 over F25 is

obtained, which establishes the algebraic structure in term of specified

polynomial generators of such codes. Among other results, all self-dual

and LCD cyclic and negacylic codes of length 100 are obtained.

1. Introduction

The constacyclic codes play a very significant role in the theory of error-
correcting codes as they are a direct generalization of the important family of
cyclic codes. Cyclic codes have been the most studied of all codes. Many well
known codes, such as BCH, Kerdock, Golay, Reed-Muller, Preparata, Justesen,
and binary Hamming codes, are either cyclic codes or constructed from cyclic
codes. The classes of cyclic codes in particular provide a very significant role in
the theory of error-correcting codes. Due to their rich algebraic structure, con-
stacyclic codes can be efficiently encoded using shift registers, which explains
their preferred role in engineering. Given a nonzero element λ of the finite field
F , λ-constacyclic codes of length n are classified as ideals as the ideals 〈f(x)〉
of the quotient ring F [x]

〈xn−λ〉 , where f(x) is a divisor of xn − λ. In the early
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history of error-correcting codes, most of the research was concentrated on the
situation when the code length n is relatively prime to the characteristic of the
field F . The case when the code length n is divisible by the characteristic p of
the field yields the so-called repeated-root codes, which were first studied since
1967 by Berman [1], and then in the 1970’s and 1980’s by several authors such
as Massey et al. [10], Falkner et al. [6], Roth and Seroussi [12]. Repeated-root
codes were first investigated in the most generality in the 1990’s by Castagnoli
et al. [2], and van Lint [14], where they showed that repeated-root cyclic codes
have a concatenated construction, and are asymptotically bad. Nevertheless,
such codes are optimal in a few cases, that motivates researchers to further
study this class of codes.

In a recently papers, we established the algebraic structure in term of
polynomial generators of all repeated-root constacyclic codes of length 2ps

over F25 [4]. In particular, all self-dual negacyclic codes of length 2ps, where
pm ≡ 1 (mod 4) were obtained. It was also shown the non-existence of self-
dual negacyclic codes of length 2ps, where pm ≡ 3 (mod 4), and self-dual cyclic
codes of length 2ps, for any odd prime p. In this paper, The line of research to
study repeated-root constacyclic codes of length 100 over finite field F25.

The purpose of this paper is to give the algebraic structure in term of
polynomial generators of all repeated-root constacyclic codes of length 100
over F25. We start in Section 2 by recalling some preliminary concepts about
constacyclic codes of any length in general. In Section 3, we give the structures
of cyclic and negacylic codes of length 100. These structures allow us to identify
all self-dual and LCD codes among them.

2. Preliminaries

Let F be a finite field. Given an n-tuple (x0, x1, . . . , xn−1) ∈ F n, the cyclic
shift τ and negashift ν on F n are defined as usual, i.e.,

τ (x0, x1, . . . , xn−1) = (xn−1, x0, x1, · · · , xn−2),

and
ν(x0, x1, . . . , xn−1) = (−xn−1, x0, x1, · · · , xn−2).

A code C is called cyclic if τ (C) = C, and C is called negacyclic if ν(C) = C.
More generally, if λ is a nonzero element of F , then the λ-constacyclic (λ-
twisted) shift τλ on F n is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, · · · , xn−2),
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and a code C is said to be λ-constacyclic if τλ(C) = C, i.e., if C is closed
under the λ-constacyclic shift τλ. In light of this definition, when λ = 1, λ-
constacyclic codes are cyclic codes, and when λ = −1, λ-constacyclic codes are
just negacyclic codes.

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its poly-
nomial representation c(x) = c0 + c1x + · · ·+ cn−1x

n−1, and the code C is in
turn identified with the set of all polynomial representations of its codewords.
Then in the ring F [x]

〈xn−λ〉 , xc(x) corresponds to a λ-constacyclic shift of c(x).
From that, the following fact is well known and straightforward (cf. [7, 8]).

Proposition 2.1. A linear code C of length n is λ-constacyclic over F if and
only if C is an ideal of F [x]

〈xn−λ〉 . Moreover, F [x]
〈xn−λ〉 is a principal ideal ring,

whose ideals are generated by factors of xn − λ.

The dual of a cyclic code is a cyclic code, and the dual of a negacyclic code
is a negacyclic code. In general, for any λ-constacyclic code length n over F ,
and arbitrary elements x ∈ C⊥, and y ∈ C, τn−1

λ (y) ∈ C, and hence,

0 = x · τn−1
λ (y) = λτλ−1 (x) · y = τλ−1 (x) · y.

That means, C⊥ is closed under the τλ−1 -shift, i.e., C⊥ is a λ−1-constacyclic
code.

Proposition 2.2. The dual of a λ-constacyclic code is a λ−1-constacyclic code.

Proposition 2.3. Let λ be a nonzero element of F and

a(x) = a0 + a1x + · · ·+ an−1x
n−1, b(x) = b0 + b1x + · · ·+ bn−1x

n−1 ∈ F [x].

Then a(x)b(x) = 0 in F [x]
〈xn−λ〉 if and only if (a0, a1, . . . , an−1) is orthogonal to

(bn−1, bn−2, . . . , b0) and all its λ−1-constacyclic shifts.

Proof. Let τλ−1 denote the λ−1-constacyclic shift for codewords of length n,
i.e., for each (x0, x1, . . . , xn−1) ∈ F n,

τλ−1 (x0, x1, . . . , xn−1) = (λ−1xn−1, x0, . . . , xn−2).

Let L be the smallest positive integer such that λL = 1. Note that, for 1 ≤ j ≤
n, 0 ≤ l ≤ L − 1,

τ j+ln
λ−1 (bn−1, bn−2, . . . , b0) = λ−lτ j

λ−1 (bn−1, bn−2, . . . , b0)
= λ−l(λ−1bj−1, . . . , λ

−1b0, bn−1, . . . , bj).
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Thus, τ i
λ−1 (bn−1, bn−2, . . . , b0), i = 1, 2, . . . , nL, are all λ−1-constacyclic shifts

of (bn−1, bn−2, . . . , b0). Let

c(x) = c0 + c1x + · · ·+ cn−1x
n−1 = a(x)b(x) ∈ F [x]

〈xn − λ〉 .

Then for k = 0, 1, . . . , n− 1,

ck =
∑

i+j=k
0≤i≤n−1
0≤j≤n−1

aibj +
∑

i+j=n+k
0≤i≤n−1
0≤j≤n−1

λaibj

= (a0, a1, . . . , ak, ak+1, . . . , an−1) · (bk, bk−1, . . . , b0, λbn−1, . . . , λbk+1)

= (a0, a1, . . . , ak, ak+1, . . . , an−1) · (λ−1bk, λ−1bk−1, . . . , λ
−1b0, bn−1, . . . , bk+1) · λ

= (a0, a1, . . . , an−1) · τk+1
λ−1 (bn−1, bn−2, . . . , b0) · λ.

Therefore, c(x) = 0 if and only if ck = 0 for k = 0, 1 . . . , n− 1 if and only if

(a0, a1, . . . , an−1) · τk+1
λ−1 (bn−1, bn−2, . . . , b0) = 0

for k = 0, 1 . . . , n − 1 if and only if (a0, a1, . . . , an−1) is orthogonal to
(bn−1, bn−2, . . . , b0) and all its λ−1-constacyclic shifts, as desired. �

Given a commutative ring R, for a nonempty subset S of R, the annihilator
of S, denoted by ann(S), is the set

ann(S) = {f | fg = 0, for all g ∈ S}.
It is easy to see that ann(S) is an ideal of R.

Customarily, for a polynomial f of degree k, its reciprocal polynomial
xkf(x−1) will be denoted by f∗. Thus, for example, if

f(x) = a0 + a1x + · · ·+ ak−1x
k−1 + akxk,

then
f∗(x) = xk(a0 + a1x

−1 + · · ·+ ak−1x
−(k−1) + akx−k)

= ak + ak−1x + · · ·+ a1x
k−1 + a0x

k.

Note that (f∗)∗ = f if and only if the constant term of f is nonzero, if and
only if deg(f) = deg(f∗). Furthermore, by definition, it is easy to see that
(fg)∗ = f∗g∗. We denote A∗ = {f∗(x) | f(x) ∈ A}. It is easy to see that if A

is an ideal, then A∗ is also an ideal.

Proposition 2.4. Let λ be a unit of F such that λ2 = 1, i.e., λ = 1 or λ = −1.
Assume that C is a λ-constacyclic code of length n over F . Then the dual C⊥

of C is ann∗(C).
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Proof. Since λ2 = 1, λ = λ−1. In light of Propositions 2.2, C⊥ is a λ-
constacyclic codes of length n over F , and hence, by Proposition 2.1, both
C and C⊥ are ideals of the ring F [x]

〈xn−λ〉 . The assertation now follows from
Proposition 2.3. �

Proposition 2.5. Let α, β be distinct nonzero elements of the field F . Then
a linear code C of length n over F is both α- and β-constacyclic if and only if
C = {0} or C = F n.

Proof. (⇐) is obvious. To prove (⇒), assume that C is a nonzero code
of length n over F , and C is both α- and β-constacyclic. As C is nonzero,
there exists a codeword with a nonzero entry in C, without loss of generality,
we can assume that (c0, . . . , cn−1) ∈ C where cn−1 	=0. It follows that both
(αcn−1, c0, . . . , cn−1) and (βcn−1, c0, . . . , cn−1) belong to C, and hence,

(1, 0, · · · , 0) = (α−β)−1c−1
n−1 [(αcn−1, c0, . . . , cn−1) − (βcn−1, c0, . . . , cn−1)] ∈ C.

As (1, 0, . . . , 0) and all its cyclic shifts give a basis for F n, it follows that
C = F n. �

By Proposition 2.2, if C is a λ-constacyclic code, then C⊥ is a λ−1 con-
stacyclic code. So if λ2 	=1, then λ 	=λ−1, and thus, in light of Proposition 3,
C 	=C⊥. That means, among constacyclic codes, we can only have self-dual
negacyclic or self-dual cyclic codes.

Proposition 2.6. If λ2 	=1, then there is no self-dual λ-constacyclic codes of
any length n over F .

Massey [9] introduced the concept of linear codes with complementary du-
als in 1992. A linear code with complementary dual, or an LCD code, is a
linear code C with the dual C⊥ such that C ∩ C⊥ = {0}. It is shown that
asymptotically good LCD codes exist, and there are applications of LCD codes
such as they provide an optimum linear coding solution for the two-user bi-
nary adder channel. It was proven by Sendrier [13] that LCD codes meet the
Gilbert-Varshamov bound. Necessary and sufficient conditions for cyclic codes
[15] and certain class of quasi-cyclic codes [5] to be LCD codes were provided.

In the class of constacyclic codes of length n over F , Propositions 2.5 and
2.2 imply that all λ-constacyclic codes with λ2 	=1 are LCD codes. Indeed, if C

is a λ-constacyclic code then C⊥ is a λ−1-constacyclic code, and hence C ∩C⊥

is both λ- and λ−1-constacyclic. When λ2 	= 1, as C ∩ C⊥ can not be F n, by
Proposition 3.1, C ∩ C⊥ = {0}.
Corollary 2.7. If λ2 	=1, then any λ-constacyclic code C of length n over F
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is a LCD code.

Proposition 2.6 tells us that, among all classes of λ-constacyclic codes, we
may only have self-dual codes in the classes of cyclic and negacyclic codes. By
Corrollary 2.7, when λ 	∈ {−1, 1}, any λ-constacyclic code C is a LCD code.
Thus, in order to obtain all LCD λ-constacyclic codes, we only need to look at
the classes of cyclic and negacyclic codes.

In Sections 3 and 4, we will concentrate on the situation when λ = 1 (cyclic
codes) and λ = −1 (negacyclic codes). We will obtain structures of all cyclic
and and negacyclic codes of length n = 100, and use that to establish all
self-dual and LCD cyclic and negacylic codes of length 100.

3. Cyclic Codes of length 100 over F25

As mentioned in Section 2, cyclic codes of length 100 over F25 are precisely
ideals of the ring

R1 =
Fpm [x]

〈x100 − 1〉 .

It is shown that R1 is a pricipal ideal ring, whose ideals are generated by factors
of x100− 1 (cf. [7]). Therefore, we first obtain the factorization of x100− 1 into
irreducible factors in Fpm [x]. Since F25 is a finite field with characteristic 5, we
can see that

x100 − 1 = (x4 − 1)25 = (x − 1)25(x + 1)25(x2 + 1)25.

Let ξ be a primitive 24th root of identity, then F25 can be expressed as follows.

F24 =
{
0, ξ, . . . , ξ23, ξ24 = ξ0 = 1

}
.

Clearly, ξ
24
2 = −1. Then

(
ξ

24
4

)2

= −1. On the other hand, there is no element

γ in F25 such that γ2 = −1, i.e., x2 + 1 is irreducible in F25[x]. We summarize
this in the following proposition.

Proposition 3.1. There exists γ ∈ F25 such that γ2 = −1, and the factoriza-
tion of x100 + 1 into irreducible factors in F25[x] is

x100 + 1 = (x − 1)25(x + 1)25(x − γ)25(x + γ)25.

Now, we can list all cyclic codes of length 100 over F25, i.e., ideals of R1,
their sizes, and duals:
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Theorem 3.2. Cyclic codes of length 100 over F25 are 〈(x − 1)i(x + 1)j(x −
γ)k(x + γ)l〉 ⊆ R1, where 0 ≤ i, j, k, l ≤ 25. Each code Ci,j,k,l = 〈(x − 1)i(x +
1)j(x−γ)k(x+γ)l〉 contains 52(100−i−j) codewords, its dual C⊥

i,j,k,l is the cyclic
code C25−i,25−j,25−l,25−k = 〈(x − 1)25−i(x + 1)25−j(x − γ)25−l(x + γ)25−k〉.
Proof. The list of cyclic codes follows from the factorization of x100 + 1 into
procduct of irreducible factors in Proposition 3.1. For the dual codes, we first
observe that ann(Ci,j,k,l) = 〈(x − 1)25−i(x + 1)25−j(x − γ)25−k(x + γ)25−l〉,
and ann(Ci,j,k) = 〈(x − 1)25−i(x + 1)25−j(x2 + 1)25−k〉. On the other hand,
(x−1)∗ = −x+1 = −(x−1), (x+1)∗ = x+1, (x−γ)∗ = −γx+1 = −γ(x+γ);
(x + γ)∗ = γx + 1 = γ(x − γ); and (x2 + 1)∗ = x2 + 1. Thus,

C⊥
i,j,k,l = ann∗(Ci,j,k,l)

=
〈
(x − 1)25−i(x + 1)ps−j(x − γ)25−k(x + γ)25−l

〉∗

=
〈[

(x − 1)ps−i
]∗ [

(x + 1)25−j
]∗ [

(x − γ)25−k
]∗ [

(x + γ)25−l
]∗〉

=
〈
[(x − 1)∗]25−i [(x + 1)∗]25−j [(x − γ)∗]25−k [(x + γ)∗]25−l

〉

=
〈
(x − 1)25−i(x + 1)25−j(x − γ)25−l(x + γ)25−k

〉

= C25−i,25−j,25−l,25−k;

and for pm ≡ 3 (mod 4),

C⊥
i,j,k = ann∗(Ci,j,k)

=
〈
(x − 1)25−i(x + 1)25−j(x2 + 1)25−k

〉∗

=
〈[

(x − 1)25−i
]∗ [

(x + 1)25−j
]∗ [

(x2 + 1)25−k
]∗〉

=
〈
[(x − 1)∗]25−i [(x + 1)∗]25−j [

(x2 + 1)∗
]25−k

〉

=
〈
(x − 1)25−i(x + 1)25−j(x2 + 1)25−k

〉

= C25−i,25−j,25−k.

Comparing the cyclic codes Ci,j,k,l, Ci,j,k and their duals C⊥
i,j,k,l, C⊥

i,j,k, we
see that Ci,j,k,l = C⊥

i,j,k,l if and only if 25 = 2i = 2j = k + l, and Ci,j,k = C⊥
i,j,k

if and only if 25 = 2i = 2j = 2k, which is impossible. Thus, self-dual cyclic
codes of length 100 do not exist.

Corollary 3.3. For any odd prime p, there are no self-dual cyclic codes of
length 100 over F25.

The structure of cyclic codes of length 100 in Theorem 3.2 also help us to
find all LCD cyclic codes.
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Corollary 3.4. There are precisely 6 LCD cyclic codes of length 100 over F25,
namely, 〈0〉, 〈(x−1)25〉, 〈(x+1)25〉, 〈(x−1)25(x+1)25〉, 〈(x−1)25(x−γ)25(x+
γ)25〉, 〈(x + 1)25(x − γ)25(x + γ)25〉, 〈1〉.
Proof. By Theorem 3.2, a cyclic code of length 100 over F25 is of the form
Ci,j,k,l = 〈(x − 1)i(x + 1)j(x − γ)k(x + γ)l〉 ⊆ R1, where 0 ≤ i, j, k, l ≤ ps,
and its dual is the cyclic code C⊥

i,j,k,l = C25−i,25−j,ps−l,25−k = 〈(x− 1)25−i(x +
1)25−j(x − γ)25−l(x + γ)25−k〉. Hence,

C ∩ C⊥ =
〈
(x − 1)max{i,25−i}(x + 1)max{j,ps−j}(x − γ)max{k,25−l}(x + γ)max{l,25−k}

〉
.

It follows that C is a LCD code, i.e. C ∩C⊥ = {0}, if and only if

max{i, 25− i} = max{j, 25− j} = max{k, 25− l} = max{l, 25− k},

which means i, j ∈ {0, 25}, and k = l = 0, or k = l = 25. �
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