ON REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 100 OVER \mathbb{F}_{25}

Nguyen Trong Bac
Department of Basic Sciences
University of Economics and Business Administration
Thai Nguyen University, Thai Nguyen 250000, Vietnam
e-mail: bacnt2008@gmail.com

Abstract

A classification of all constacyclic codes of length 100 over \mathbb{F}_{25} is obtained, which establishes the algebraic structure in term of specified polynomial generators of such codes. Among other results, all self-dual and LCD cyclic and negacylic codes of length 100 are obtained.

1. Introduction

The constacyclic codes play a very significant role in the theory of errorcorrecting codes as they are a direct generalization of the important family of cyclic codes. Cyclic codes have been the most studied of all codes. Many well known codes, such as BCH, Kerdock, Golay, Reed-Muller, Preparata, Justesen, and binary Hamming codes, are either cyclic codes or constructed from cyclic codes. The classes of cyclic codes in particular provide a very significant role in the theory of error-correcting codes. Due to their rich algebraic structure, constacyclic codes can be efficiently encoded using shift registers, which explains their preferred role in engineering. Given a nonzero element λ of the finite field F, λ-constacyclic codes of length n are classified as ideals as the ideals $\langle f(x)\rangle$ of the quotient ring $\frac{F[x]}{\left\langle x^{n}-\lambda\right\rangle}$, where $f(x)$ is a divisor of $x^{n}-\lambda$. In the early
history of error-correcting codes, most of the research was concentrated on the situation when the code length n is relatively prime to the characteristic of the field F. The case when the code length n is divisible by the characteristic p of the field yields the so-called repeated-root codes, which were first studied since 1967 by Berman [1], and then in the 1970's and 1980's by several authors such as Massey et al. [10], Falkner et al. [6], Roth and Seroussi [12]. Repeated-root codes were first investigated in the most generality in the 1990's by Castagnoli et al. [2], and van Lint [14], where they showed that repeated-root cyclic codes have a concatenated construction, and are asymptotically bad. Nevertheless, such codes are optimal in a few cases, that motivates researchers to further study this class of codes.

In a recently papers, we established the algebraic structure in term of polynomial generators of all repeated-root constacyclic codes of length $2 p^{s}$ over \mathbb{F}_{25} [4]. In particular, all self-dual negacyclic codes of length $2 p^{s}$, where $p^{m} \equiv 1(\bmod 4)$ were obtained. It was also shown the non-existence of selfdual negacyclic codes of length $2 p^{s}$, where $p^{m} \equiv 3(\bmod 4)$, and self-dual cyclic codes of length $2 p^{s}$, for any odd prime p. In this paper, The line of research to study repeated-root constacyclic codes of length 100 over finite field \mathbb{F}_{25}.

The purpose of this paper is to give the algebraic structure in term of polynomial generators of all repeated-root constacyclic codes of length 100 over \mathbb{F}_{25}. We start in Section 2 by recalling some preliminary concepts about constacyclic codes of any length in general. In Section 3, we give the structures of cyclic and negacylic codes of length 100 . These structures allow us to identify all self-dual and LCD codes among them.

2. Preliminaries

Let F be a finite field. Given an n-tuple $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in F^{n}$, the cyclic shift τ and negashift ν on F^{n} are defined as usual, i.e.,

$$
\tau\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left(x_{n-1}, x_{0}, x_{1}, \cdots, x_{n-2}\right)
$$

and

$$
\nu\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left(-x_{n-1}, x_{0}, x_{1}, \cdots, x_{n-2}\right)
$$

A code C is called cyclic if $\tau(C)=C$, and C is called negacyclic if $\nu(C)=C$. More generally, if λ is a nonzero element of F, then the λ-constacyclic $(\lambda$ twisted) shift τ_{λ} on F^{n} is the shift

$$
\tau_{\lambda}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left(\lambda x_{n-1}, x_{0}, x_{1}, \cdots, x_{n-2}\right)
$$

and a code C is said to be λ-constacyclic if $\tau_{\lambda}(C)=C$, i.e., if C is closed under the λ-constacyclic shift τ_{λ}. In light of this definition, when $\lambda=1, \lambda$ constacyclic codes are cyclic codes, and when $\lambda=-1, \lambda$-constacyclic codes are just negacyclic codes.

Each codeword $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ is customarily identified with its polynomial representation $c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$, and the code C is in turn identified with the set of all polynomial representations of its codewords. Then in the ring $\frac{F[x]}{\left\langle x^{n}-\lambda\right\rangle}, x c(x)$ corresponds to a λ-constacyclic shift of $c(x)$. From that, the following fact is well known and straightforward (cf. [7, 8]).

Proposition 2.1. A linear code C of length n is λ-constacyclic over F if and only if C is an ideal of $\frac{F[x]}{\left\langle x^{n}-\lambda\right\rangle}$. Moreover, $\frac{F[x]}{\left\langle x^{n}-\lambda\right\rangle}$ is a principal ideal ring, whose ideals are generated by factors of $x^{n}-\lambda$.

The dual of a cyclic code is a cyclic code, and the dual of a negacyclic code is a negacyclic code. In general, for any λ-constacyclic code length n over F, and arbitrary elements $x \in C^{\perp}$, and $y \in C, \tau_{\lambda}^{n-1}(y) \in C$, and hence,

$$
0=x \cdot \tau_{\lambda}^{n-1}(y)=\lambda \tau_{\lambda-1}(x) \cdot y=\tau_{\lambda^{-1}}(x) \cdot y
$$

That means, C^{\perp} is closed under the $\tau_{\lambda^{-1}}$-shift, i.e., C^{\perp} is a λ^{-1}-constacyclic code.

Proposition 2.2. The dual of a λ-constacyclic code is $a \lambda^{-1}$-constacyclic code.
Proposition 2.3. Let λ be a nonzero element of F and

$$
a(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}, b(x)=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1} \in F[x] .
$$

Then $a(x) b(x)=0$ in $\frac{F[x]}{\left\langle x^{n}-\lambda\right\rangle}$ if and only if $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is orthogonal to $\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)$ and all its λ^{-1}-constacyclic shifts.

Proof. Let $\tau_{\lambda-1}$ denote the λ^{-1}-constacyclic shift for codewords of length n, i.e., for each $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in F^{n}$,

$$
\tau_{\lambda^{-1}}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=\left(\lambda^{-1} x_{n-1}, x_{0}, \ldots, x_{n-2}\right)
$$

Let L be the smallest positive integer such that $\lambda^{L}=1$. Note that, for $1 \leq j \leq$ $n, 0 \leq l \leq L-1$,

$$
\begin{aligned}
\tau_{\lambda^{-1}}^{j+l n}\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right) & =\lambda^{-l} \tau_{\lambda^{-1}}^{j}\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right) \\
& =\lambda^{-l}\left(\lambda^{-1} b_{j-1}, \ldots, \lambda^{-1} b_{0}, b_{n-1}, \ldots, b_{j}\right)
\end{aligned}
$$

Thus, $\tau_{\lambda^{-1}}^{i}\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right), i=1,2, \ldots, n L$, are all λ^{-1}-constacyclic shifts of $\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)$. Let

$$
c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}=a(x) b(x) \in \frac{F[x]}{\left\langle x^{n}-\lambda\right\rangle} .
$$

Then for $k=0,1, \ldots, n-1$,

$$
\begin{aligned}
c_{k} & =\sum_{\substack{i+j=k \\
0 \leq \leq \leq n-1 \\
0 \leq j \leq n-1}} a_{i} b_{j}+\sum_{\substack{i+j=n+k \\
0 \leq \leq n-1 \\
0 \leq j \leq n-1}} \lambda a_{i} b_{j} \\
& =\left(a_{0}, a_{1}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n-1}\right) \cdot\left(b_{k}, b_{k-1}, \ldots, b_{0}, \lambda b_{n-1}, \ldots, \lambda b_{k+1}\right) \\
& =\left(a_{0}, a_{1}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n-1}\right) \cdot\left(\lambda^{-1} b_{k}, \lambda^{-1} b_{k-1}, \ldots, \lambda^{-1} b_{0}, b_{n-1}, \ldots, b_{k+1}\right) \cdot \lambda \\
& =\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \cdot \tau_{\lambda-1}^{k+1}\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right) \cdot \lambda
\end{aligned}
$$

Therefore, $c(x)=0$ if and only if $c_{k}=0$ for $k=0,1 \ldots, n-1$ if and only if

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \cdot \tau_{\lambda^{-1}}^{k+1}\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)=0
$$

for $k=0,1 \ldots, n-1$ if and only if $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is orthogonal to $\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)$ and all its λ^{-1}-constacyclic shifts, as desired.

Given a commutative ring R, for a nonempty subset S of R, the annihilator of S, denoted by $\operatorname{ann}(S)$, is the set

$$
\operatorname{ann}(S)=\{f \mid f g=0, \text { for all } g \in S\}
$$

It is easy to see that $\operatorname{ann}(S)$ is an ideal of R.
Customarily, for a polynomial f of degree k, its reciprocal polynomial $x^{k} f\left(x^{-1}\right)$ will be denoted by f^{*}. Thus, for example, if

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}+a_{k} x^{k}
$$

then

$$
\begin{aligned}
f^{*}(x) & =x^{k}\left(a_{0}+a_{1} x^{-1}+\cdots+a_{k-1} x^{-(k-1)}+a_{k} x^{-k}\right) \\
& =a_{k}+a_{k-1} x+\cdots+a_{1} x^{k-1}+a_{0} x^{k}
\end{aligned}
$$

Note that $\left(f^{*}\right)^{*}=f$ if and only if the constant term of f is nonzero, if and only if $\operatorname{deg}(f)=\operatorname{deg}\left(f^{*}\right)$. Furthermore, by definition, it is easy to see that $(f g)^{*}=f^{*} g^{*}$. We denote $A^{*}=\left\{f^{*}(x) \mid f(x) \in A\right\}$. It is easy to see that if A is an ideal, then A^{*} is also an ideal.
Proposition 2.4. Let λ be a unit of F such that $\lambda^{2}=1$, i.e., $\lambda=1$ or $\lambda=-1$. Assume that C is a λ-constacyclic code of length n over F. Then the dual C^{\perp} of C is ann $^{*}(C)$.

Proof. Since $\lambda^{2}=1, \lambda=\lambda^{-1}$. In light of Propositions 2.2, C^{\perp} is a λ constacyclic codes of length n over F, and hence, by Proposition 2.1, both C and C^{\perp} are ideals of the ring $\frac{F[x]}{\left\langle x^{n}-\lambda\right\rangle}$. The assertation now follows from Proposition 2.3.
Proposition 2.5. Let α, β be distinct nonzero elements of the field F. Then a linear code C of length n over F is both α-and β-constacyclic if and only if $C=\{\mathbf{0}\}$ or $C=F^{n}$.

Proof. (\Leftarrow) is obvious. To prove (\Rightarrow), assume that C is a nonzero code of length n over F, and C is both α - and β-constacyclic. As C is nonzero, there exists a codeword with a nonzero entry in C, without loss of generality, we can assume that $\left(c_{0}, \ldots, c_{n-1}\right) \in C$ where $c_{n-1} \neq 0$. It follows that both $\left(\alpha c_{n-1}, c_{0}, \ldots, c_{n-1}\right)$ and $\left(\beta c_{n-1}, c_{0}, \ldots, c_{n-1}\right)$ belong to C, and hence,
$(1,0, \cdots, 0)=(\alpha-\beta)^{-1} c_{n-1}^{-1}\left[\left(\alpha c_{n-1}, c_{0}, \ldots, c_{n-1}\right)-\left(\beta c_{n-1}, c_{0}, \ldots, c_{n-1}\right)\right] \in C$.
As $(1,0, \ldots, 0)$ and all its cyclic shifts give a basis for F^{n}, it follows that $C=F^{n}$.

By Proposition 2.2, if C is a λ-constacyclic code, then C^{\perp} is a λ^{-1} constacyclic code. So if $\lambda^{2} \neq 1$, then $\lambda \neq \lambda^{-1}$, and thus, in light of Proposition 3, $C \neq C^{\perp}$. That means, among constacyclic codes, we can only have self-dual negacyclic or self-dual cyclic codes.

Proposition 2.6. If $\lambda^{2} \neq 1$, then there is no self-dual λ-constacyclic codes of any length n over F.

Massey [9] introduced the concept of linear codes with complementary duals in 1992. A linear code with complementary dual, or an LCD code, is a linear code C with the dual C^{\perp} such that $C \cap C^{\perp}=\{\mathbf{0}\}$. It is shown that asymptotically good LCD codes exist, and there are applications of LCD codes such as they provide an optimum linear coding solution for the two-user binary adder channel. It was proven by Sendrier [13] that LCD codes meet the Gilbert-Varshamov bound. Necessary and sufficient conditions for cyclic codes [15] and certain class of quasi-cyclic codes [5] to be LCD codes were provided.

In the class of constacyclic codes of length n over F, Propositions 2.5 and 2.2 imply that all λ-constacyclic codes with $\lambda^{2} \neq 1$ are LCD codes. Indeed, if C is a λ-constacyclic code then C^{\perp} is a λ^{-1}-constacyclic code, and hence $C \cap C^{\perp}$ is both λ - and λ^{-1}-constacyclic. When $\lambda^{2} \neq 1$, as $C \cap C^{\perp}$ can not be F^{n}, by Proposition 3.1, $C \cap C^{\perp}=\{\mathbf{0}\}$.

Corollary 2.7. If $\lambda^{2} \neq 1$, then any λ-constacyclic code C of length n over F
is a $L C D$ code.
Proposition 2.6 tells us that, among all classes of λ-constacyclic codes, we may only have self-dual codes in the classes of cyclic and negacyclic codes. By Corrollary 2.7, when $\lambda \notin\{-1,1\}$, any λ-constacyclic code C is a LCD code. Thus, in order to obtain all LCD λ-constacyclic codes, we only need to look at the classes of cyclic and negacyclic codes.

In Sections 3 and 4, we will concentrate on the situation when $\lambda=1$ (cyclic codes) and $\lambda=-1$ (negacyclic codes). We will obtain structures of all cyclic and and negacyclic codes of length $n=100$, and use that to establish all self-dual and LCD cyclic and negacylic codes of length 100.

3. Cyclic Codes of length 100 over \mathbb{F}_{25}

As mentioned in Section 2, cyclic codes of length 100 over \mathbb{F}_{25} are precisely ideals of the ring

$$
\mathcal{R}_{1}=\frac{\mathbb{F}_{p^{m}}[x]}{\left\langle x^{100}-1\right\rangle} .
$$

It is shown that \mathcal{R}_{1} is a pricipal ideal ring, whose ideals are generated by factors of $x^{100}-1$ (cf. [7]). Therefore, we first obtain the factorization of $x^{100}-1$ into irreducible factors in $\mathbb{F}_{p^{m}}[x]$. Since \mathbb{F}_{25} is a finite field with characteristic 5 , we can see that

$$
x^{100}-1=\left(x^{4}-1\right)^{25}=(x-1)^{25}(x+1)^{25}\left(x^{2}+1\right)^{25}
$$

Let ξ be a primitive 24 th root of identity, then $\mathbb{F}_{2} 5$ can be expressed as follows.

$$
\mathbb{F}_{24}=\left\{0, \xi, \ldots, \xi^{23}, \xi^{24}=\xi^{0}=1\right\}
$$

Clearly, $\xi^{\frac{24}{2}}=-1$. Then $\left(\xi^{\frac{24}{4}}\right)^{2}=-1$. On the other hand, there is no element γ in \mathbb{F}_{25} such that $\gamma^{2}=-1$, i.e., $x^{2}+1$ is irreducible in $\mathbb{F}_{25}[x]$. We summarize this in the following proposition.

Proposition 3.1. There exists $\gamma \in \mathbb{F}_{25}$ such that $\gamma^{2}=-1$, and the factorization of $x^{100}+1$ into irreducible factors in $\mathbb{F}_{25}[x]$ is

$$
x^{100}+1=(x-1)^{25}(x+1)^{25}(x-\gamma)^{25}(x+\gamma)^{25}
$$

Now, we can list all cyclic codes of length 100 over \mathbb{F}_{25}, i.e., ideals of \mathcal{R}_{1}, their sizes, and duals:

Theorem 3.2. Cyclic codes of length 100 over \mathbb{F}_{25} are $\left\langle(x-1)^{i}(x+1)^{j}(x-\right.$ $\left.\gamma)^{k}(x+\gamma)^{l}\right\rangle \subseteq \mathcal{R}_{1}$, where $0 \leq i, j, k, l \leq 25$. Each code $C_{i, j, k, l}=\left\langle(x-1)^{i}(x+\right.$ $\left.1)^{j}(x-\gamma)^{k}(x+\gamma)^{l}\right\rangle$ contains $5^{2(100-i-j)}$ codewords, its dual $C_{i, j, k, l}^{\perp}$ is the cyclic code $C_{25-i, 25-j, 25-l, 25-k}=\left\langle(x-1)^{25-i}(x+1)^{25-j}(x-\gamma)^{25-l}(x+\gamma)^{25-k}\right\rangle$.
Proof. The list of cyclic codes follows from the factorization of $x^{100}+1$ into procduct of irreducible factors in Proposition 3.1. For the dual codes, we first observe that $\operatorname{ann}\left(C_{i, j, k, l}\right)=\left\langle(x-1)^{25-i}(x+1)^{25-j}(x-\gamma)^{25-k}(x+\gamma)^{25-l}\right\rangle$, and $\operatorname{ann}\left(C_{i, j, k}\right)=\left\langle(x-1)^{25-i}(x+1)^{25-j}\left(x^{2}+1\right)^{25-k}\right\rangle$. On the other hand, $(x-1)^{*}=-x+1=-(x-1),(x+1)^{*}=x+1,(x-\gamma)^{*}=-\gamma x+1=-\gamma(x+\gamma) ;$ $(x+\gamma)^{*}=\gamma x+1=\gamma(x-\gamma)$; and $\left(x^{2}+1\right)^{*}=x^{2}+1$. Thus,

$$
\begin{aligned}
C_{i, j, k, l}^{\perp} & =\operatorname{ann}^{*}\left(C_{i, j, k, l}\right) \\
& =\left\langle(x-1)^{25-i}(x+1)^{p^{s}-j}(x-\gamma)^{25-k}(x+\gamma)^{25-l}\right\rangle^{*} \\
& =\left\langle\left[(x-1)^{p^{s}-i}\right]^{*}\left[(x+1)^{25-j}\right]^{*}\left[(x-\gamma)^{25-k}\right]^{*}\left[(x+\gamma)^{25-l}\right]^{*}\right\rangle \\
& =\left\langle\left[(x-1)^{*}\right]^{25-i}\left[(x+1)^{*}\right]^{25-j}\left[(x-\gamma)^{*}\right]^{25-k}\left[(x+\gamma)^{*}\right]^{25-l}\right\rangle \\
& =\left\langle(x-1)^{25-i}(x+1)^{25-j}(x-\gamma)^{25-l}(x+\gamma)^{25-k}\right\rangle \\
& =C_{25-i, 25-j, 25-l, 25-k}
\end{aligned}
$$

and for $p^{m} \equiv 3(\bmod 4)$,

$$
\begin{aligned}
C_{i, j, k}^{\perp} & =\operatorname{ann}^{*}\left(C_{i, j, k}\right) \\
& =\left\langle(x-1)^{25-i}(x+1)^{25-j}\left(x^{2}+1\right)^{25-k}\right\rangle^{*} \\
& =\left\langle\left[(x-1)^{25-i}\right]^{*}\left[(x+1)^{25-j}\right]^{*}\left[\left(x^{2}+1\right)^{25-k}\right]^{*}\right\rangle \\
& =\left\langle\left[(x-1)^{*}\right]^{25-i}\left[(x+1)^{*}\right]^{25-j}\left[\left(x^{2}+1\right)^{*}\right]^{25-k}\right\rangle \\
& =\left\langle(x-1)^{25-i}(x+1)^{25-j}\left(x^{2}+1\right)^{25-k}\right\rangle \\
& =C_{25-i, 25-j, 25-k}
\end{aligned}
$$

Comparing the cyclic codes $C_{i, j, k, l}, C_{i, j, k}$ and their duals $C_{i, j, k, l}^{\perp}, C_{i, j, k}^{\perp}$, we see that $C_{i, j, k, l}=C_{i, j, k, l}^{\perp}$ if and only if $25=2 i=2 j=k+l$, and $C_{i, j, k}=C_{i, j, k}^{\perp}$ if and only if $25=2 i=2 j=2 k$, which is impossible. Thus, self-dual cyclic codes of length 100 do not exist.

Corollary 3.3. For any odd prime p, there are no self-dual cyclic codes of length 100 over \mathbb{F}_{25}.

The structure of cyclic codes of length 100 in Theorem 3.2 also help us to find all LCD cyclic codes.

Corollary 3.4. There are precisely 6 LCD cyclic codes of length 100 over \mathbb{F}_{25}, namely, $\langle 0\rangle,\left\langle(x-1)^{25}\right\rangle,\left\langle(x+1)^{25}\right\rangle,\left\langle(x-1)^{25}(x+1)^{25}\right\rangle,\left\langle(x-1)^{25}(x-\gamma)^{25}(x+\right.$ $\left.\gamma)^{25}\right\rangle,\left\langle(x+1)^{25}(x-\gamma)^{25}(x+\gamma)^{25}\right\rangle,\langle 1\rangle$.
Proof. By Theorem 3.2, a cyclic code of length 100 over \mathbb{F}_{25} is of the form $C_{i, j, k, l}=\left\langle(x-1)^{i}(x+1)^{j}(x-\gamma)^{k}(x+\gamma)^{l}\right\rangle \subseteq \mathcal{R}_{1}$, where $0 \leq i, j, k, l \leq p^{s}$, and its dual is the cyclic code $C_{i, j, k, l}^{\perp}=C_{25-i, 25-j, p^{s}-l, 25-k}=\left\langle(x-1)^{25-i}(x+\right.$ $\left.1)^{25-j}(x-\gamma)^{25-l}(x+\gamma)^{25-k}\right\rangle$. Hence,

$$
C \cap C^{\perp}=\left\langle(x-1)^{\max \{i, 25-i\}}(x+1)^{\max \left\{j, p^{s}-j\right\}}(x-\gamma)^{\max \{k, 25-l\}}(x+\gamma)^{\max \{l, 25-k\}}\right\rangle
$$

It follows that C is a LCD code, i.e. $C \cap C^{\perp}=\{\mathbf{0}\}$, if and only if

$$
\max \{i, 25-i\}=\max \{j, 25-j\}=\max \{k, 25-l\}=\max \{l, 25-k\}
$$

which means $i, j \in\{0,25\}$, and $k=l=0$, or $k=l=25$.

References

[1] S.D. Berman, Semisimple cyclic and Abelian codes. II, Kibernetika (Kiev) 3 (1967), 21-30 (Russian). English translation: Cybernetics 3 (1967), 17-23.
[2] G. Castagnoli, J.L. Massey, P.A. Schoeller, and N. von Seemann, On repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), 337-342.
[3] H.Q. Dinh, Constacyclic codes of length 2^{s} over Galois extension rings of $\mathbb{F}_{2}+u \mathbb{F}_{2}$, IEEE Trans. Inform. Theory 55 (2009), 1730-1740.
[4] H.Q. Dinh, Repeated-root constacyclic codes of length $2 p^{s}$, Finite Fields \& Appl. 18 (2012), 133-143.
[5] M. Esmaeili and S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields Appl. 15 (2009), 375-386.
[6] G. Falkner, B. Kowol, W. Heise, E. Zehendner, On the existence of cyclic optimal codes, Atti Sem. Mat. Fis. Univ. Modena 28 (1979), 326-341.
[7] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003.
[8] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, $10^{\text {th }} \mathrm{im}$ pression, North-Holland, Amsterdam, 1998.
[9] J.L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337-342.
[10] J.L. Massey, D.J. Costello, and J. Justesen, Polynomial weights and code constructions, IEEE Trans. Information Theory 19 (1973), 101-110.
[11] B.R. McDonald, Finite rings with identity, Pure and Applied Mathematics, Vol. 28, Marcel Dekker, New York, 1974.
[12] R.M. Roth and G. Seroussi, On cyclic MDS codes of length q over GF(q), IEEE Trans. Inform. Theory 32 (1986), 284-285.
[13] N. Sendrier, Linear codes with complementary duals meet the Gilbert-Varshamov bound, Discrete Math. 285 (2004), 345-347.
[14] J.H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory 37 (1991), 343-345.
[15] X. Yang and J.L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math. 126(1994), 391-393.

