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Abstract

Direct sum of finite fields F2 ⊕ F5 is a commutative semi-simpe ring.

In this study, we investigate quantum MDS codes over F2 ⊕ F5.

1. Introduction

Constacyclic codes have practical applications as they can be efficiently encoded
using simple shift registers. They have rich algebraic structures for efficient er-
ror detection and correction, which explains their preferred role in engineering.
In fact, constacyclic codes are the most studied of all codes. Many well known
codes, such as BCH, Kerdock, Golay, Reed-Muller, Preparata, Justesen, and
binary Hamming codes, are either a class of constacyclic codes or constructed
from constacyclic codes.

Classically, the algebraic structures of constacyclic codes are determined by
ideals in the polynomial rings over finite fields, Galois rings and finite chain
rings. Recently, codes over finite non-chain rings have been also studied. In
2010, Zhu et.al. [32] investigated the structures and properties of cyclic codes
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over the ring F2 +vF2 where v2 = v. The structure of codes over the ring Z3 [v]
〈v3−v〉

is studied by Bayram and Siap [3]. After that, Gao and Wang [17] introduced a
new generalization of [3] by considering the linear codes over Fp+vFp +v2

Fp. In
2014, Bayram and Siap [4] continued to study codes over the ring Zp[v]

〈vp−v〉 . The
algebraic structures of linear, cyclic and constacyclic codes over this ring are
determined by means of a Grey map. By using Gray map defined in [4], Sari
and Siap [26] obtained the quantum error correcting codes over Fp. Moreover,
the algebraic structures of the cyclic codes of arbitrary length over the finite
non-chain ring Fp + vFp + · · · + vp−1

Fp where vp = v are also introduced in
[26]. As noted in Remark 2.5, this ring Fp + vFp + · · · + vp−1

Fp is in fact a
direct sum of p copies of the finite field Fp.

Quantum error correcting codes play an important role in quantum commu-
nications and computation. Therefore, the study of quantum codes has devel-
oped rapidly in recent decade years. Using CSS, Hermitian constructions and
different methods, many classes of quantum codes have been constructed. In
recent years, constructing quantum maximal distance separable (MDS) codes
has become a hot topic. Some quantum MDS codes with special length over
finite fields are introduced. Quantum codes over the non-chain rings are also
studied by Qian [28], Ashraf and Mohammad [2], Dertli et.al. [10] and Sari
and Siap [26].

In this paper, we study the situation of codes whose alphabets are of the
most general form of the rings in [3], [4], [17], [26], [32], i.e., our code-alphabet
is a finite commutative semi-simple ring R, which is a direct sum of k finite
fields, R = F2⊕F5 . We obtain the structure of all λ-constacyclic codes over R,
and we show that each λ-constacyclic code C of length n over R has a (unique)
standard representation C = ⊕2

i=1Ci, where each Ci is a λi-constacyclic code
of length n over Fi (i = 1, 2). The generator polynomials, generator matrices,
and sizes of all λ-constacyclic codes are established. We deal with duals of such
constacyclic codes, and we show that the dual of ⊕k

i=1Ci is ⊕k
i=1C

⊥
i , where C⊥

i

are duals of Ci, which are λ−1
i -constacyclic codes of length n over Fi. The

structure of linear and constacyclic codes and their duals are used to study
quantum error-correcting codes over finite commutative semi-simple rings. We
extended the CSS and Hermitian constructions for quantum codes over finite
fields to construct quantum MDS codes over semi-simple ring R.
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2. Preliminaries

For a finite ring R, consider the set Rn of n-tuples of elements from R as a
module over R. Any subset C ⊆ Rn is called a code of length n over R, the
code C is linear if in addition, C is an R-submodule of Rn. Given an n-tuples
(x0, x1, . . . , xn−1) ∈ Rn, the cyclic shift τ and negashift ν on Rn are defined as
usual, i.e.,

τ (x0, x1, . . . , xn−1) = (xn−1, x0, x1, · · · , xn−2),

and
ν(x0, x1, . . . , xn−1) = (−xn−1, x0, x1, · · · , xn−2).

A code C is called cyclic if τ (C) = C, and C is called negacyclic if ν(C) = C.

More generally, if λ is a unit of the ring R, then the λ-constacyclic (λ-
twisted) shift τλ on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, · · · , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C, i.e., if C is closed
under the λ-constacyclic shift τλ. In light of this definition, when λ = 1, λ-
constacyclic codes are cyclic codes, and when λ = −1, λ-constacyclic codes are
just negacyclic codes.

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its poly-
nomial representation c(x) = c0 + c1x + · · ·+ cn−1x

n−1, and the code C is in
turn identified with the set of all polynomial representations of its codewords.
Then in the ring R[x]

〈xn−λ〉 , xc(x) corresponds to a λ-constacyclic shift of c(x).
From that, the following fact is well-known and straightforward:

Proposition 2.1. A linear code C of length n is λ-constacyclic over R if and
only if C is an ideal of R[x]

〈xn−λ〉 .

Given n-tuples x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn, their
inner product or dot product is defined as usual

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1

(evaluated in R). Two n-tuples x, y are called orthogonal if x · y = 0. For a
linear code C over R, its dual code C⊥ is the set of n-tuples over R that are
orthogonal to all codewords of C, i.e.,

C⊥ = {x | x · y = 0, ∀y ∈ C}.
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A code C is called self-orthogonal if C ⊆ C⊥, and it is called self-dual if C = C⊥.
The following result is well-known (cf. [8, 14, 31]).

Proposition 2.2. Let R be a finite Frobenius ring, and C be a linear code of
length n over R. Then |C| · |C⊥| = |R|n.

The dual of a cyclic code is a cyclic code, and the dual of a negacyclic code
is a negacyclic code. In general, we have the following implication of the dual
of a λ-constacyclic code.

Proposition 2.3. (cf. [11]) The dual of a λ-constacyclic code is a λ−1-
constacyclic code.

Recall that a linear code C over Fq of length n and the minimum Hamming
distance d is denoted by [n, k, d]q, where |C| = qk and k is called the dimension
of the linear code C. The Hamming distance dH(x, y) between two vectors
x, y ∈ F

n
pm is defined to be the number of coordinates in which x and y differ.

In this paper, we consider finite commutative semi-simple rings, which are
rings that can be expressed as a finite direct sum of finite fields.

R = F0 ⊕ F1 ⊕ · · · ⊕ Fk−1,

where Fi are finite fields with |Fi| = qi. The addition + and multiplication *
in R are component-wise, i.e., for (a0, a1, . . . , ak−1) and (b0, b1, . . . , bk−1) in R,

(a0, a1, . . . , ak−1) + (b0, b1, . . . , bk−1) = (a0 + b0, a1 + b1, . . . , ak−1 + bk−1),

(a0, a1, . . . , ak−1) ∗ (b0, b1, . . . , bk−1) = (a0b0, a1b1, . . . , ak−1bk−1).

Proposition 2.4. The followings hold true

(a) R is Frobenius.

(b) There are
∏k−1

i=0 (qi−1) units of R, they are of the form λ = (λ0, . . . , λk−1),
where each λi is a unit in Fi.

3. Quantum Codes over R

A quantum computer can certainly solve hard problems much more quickly
than the classical computer. Quantum error-correcting codes have a prominent
place in quantum communication as well as quantum computation. To protect
quantum information from errors due to the decoherence and other quantum



166 Quantum Codes Over A Class of...

noise, quantum error-correcting codes are used in quantum computing. Many
good quantum cyclic error-correcting codes were constructed from Hamming
codes, BCH codes and Reed-Solomon codes. Quantum error-correcting codes
were first introduced by P. Shor in 1995. Although the theory of quantum error
correcting codes is quite different from the theory of classical error correcting
codes, Calderbank et. al. transformed the problem of finding quantum error
correcting codes from classical error correcting codes over GF(4). In 1998,
Calderbank, Shor and Steane introduced a method to construct quantum error-
correcting codes from classical error-correcting codes. Recently, the theory
of quantum error-correcting codes is studied not only over finite fields but
also over some special classes of finite rings. For examples, a new method of
constructing quantum error correcting codes from cyclic codes over finite ring
F2 + vF2 , v

2 = v, for arbitrary length is introduced in [28]. After that, Ashraf
and Mohammad [2] studied the quantum codes from cyclic codes over F3 +vF3 ,
where v2 = 1. Furthermore, good quantum codes obtained from cyclic codes
over F2 + uF2 + vF2 + uvF2 are introduced by Dertli et.al. in a recent paper
[10]. In 2015, Sari and Siap [26] obtained the quantum error correcting codes
over Fp from codes over the finite non-chain ring Rp = Fp +vFp + · · ·+vp−1

Fp,

where vp = v. A crucial construction of quantum error-correcting codes, known
as the CSS construction, was given in [7].

Theorem 3.1. (CSS Construction) [7] Let C1 and C2 be two linear codes over
Fq of the parameters [n, k1, d1]q and [n, k2, d2]q such that C2 ⊆ C1, respectively.
Then there exists a quantum error correcting code with the parameters [[n, k1−
k2, min{d1, d

⊥
2 }]]q where d⊥

2 is the Hamming distance of the dual code C⊥
2 .

Moreover, if C2 = C⊥
1 , then there exists a quantum error correcting code having

the parameters [[n; 2k1 − n; d1]]q.

By studying classical cyclic codes over finite field Fq with dual containing
properties, many good quantum codes have been constructed. We now extend
this construction to give a quantum error correcting code over R.

Theorem 3.2. Let C = C1 ⊕ C2 be a cyclic code of length n over R. If C⊥
i ⊆

Ci, then there exists a quantum error correcting code over R with parameters
([[n, 2k0 − n, d0]]q0, . . . , [[n, 2kk−1− n, dk−1]]qk−1).

Proof. By Theorem 3.1, there exists a quantum error correcting code Ti over Fi

having the parameters [[n, 2ki − n, di]]qi for each i = 0, . . . , k − 1. This implies
that T = ⊕k−1

i=0 Ti is a quantum error correcting code over R with parameters
([[n, 2k0 − n, d0]]q0, . . . , [[n, 2kk−1− n, dk−1]]qk−1), as desired. �
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We knew that every code C over R can be expressed as C = ⊕k−1
i=0 Ti

for some codes Ci over Fi (i = 0, . . . , k − 1). Therefore, to construct quan-
tum error correcting code over R, we construct quantum error correcting code
over Fi. If Fi = Fq for all i = 0, . . . , k − 1, then the multiple parameters
([[n, 2k0 − n, d0]]q0, . . . , [[n, 2kk−1 − n, dk−1]]qk−1) are coincided with the pa-
rameters [[n, 2k− n, d]]q.

The quantum Singleton bound for codes was strengthened by Calderbank,
Rains, Shor and Sloane [9]. The binary version of the quantum Singleton
bound was first proved by Knill and Laflamme [21]. It is known as the Knill
and Laflamme formular when d is odd. We introduce quantum Singleton bound
here to use it later.

Theorem 5.3. (Quantum Singleton Bound) [20, Theorem 1] Let C = [[n, k, d]]q
be a quantum error-correction code. Then k + 2d ≤ n + 2.

In recent years, constructing quantum maximum distance separable (briefly,
MDS) codes have become one of the central topics for quantum codes. The
quantum MDS codes can be constructed by the Hermitian construction and the
quantum Singleton bound. Therefore, to get q-ary quantum MDS codes, we
need to determine linear MDS codes over Fq2 satisfying C⊥H ⊆ C, where C⊥H

is the Hermitian dual code of C. Many new classes of quantum MDS codes
are constructed by this idea. For examples, Guardia [19] introduced a class
of quantum codes based on cyclic codes. By using negacyclic codes, Kai and
Zhu [22] gave two new classes of quantum MDS codes. Motivated the work in
[22], from constacyclic codes, Kai et.al. [23] constructed several new quantum
MDS codes. In 2014, some classes of dual containing MDS constacyclic codes
are given and their parameters are computed by Chen et.al. [5]. These results
allowed them to construct new quantum MDS codes.

From Theorem 3.2, we can construct a quantum MDS code by using the
CSS Construction.

Theorem 3.4. Let C = C1 ⊕ C2 be a cyclic code of length n over R. If
C⊥

i ⊆ Ci, then there exists a quantum MDS code over R with parameters
([[n, n− d0 + 1, d0]]q0 , [[n, n− d1 + 1, d1]]q1, . . . , [[n, n− dk−1 + 1, dk−1]]qk−1).

Proof. By Theorem 3.2, there exists a quantum error correcting code over R

with parameters ([[n, 2k0 − n, d0]]q0 , . . . ,

[[n, 2kk−1− n, dk−1]]qk−1). This follows that there exists a quantum MDS code
over R with parameters ([[n, n− d0 + 1, d0]]q0 , [[n, n− d1 +1, d1]]q1, . . . , [[n, n−
dk−1 + 1, dk−1]]qk−1). �
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The Hermitian inner product is defined as x ◦Fq2 y = x0ȳ0 + x1ȳ1 + · · · +
xn−1ȳn−1, where x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ F

n
q2 and ȳi =

yq
i . The Hermitian dual code of C is defined as C⊥H = {x ∈ F

n
q2 |

n−1∑

i=0

xiȳi =

0, ∀y ∈ C}. If C ⊆ C⊥H , then C is called a Hermitian self-orthogonal code.
The code C satisfying C⊥H ⊆ C is called a Hermitian dual-containing code.
Hermitian dual-containing codes are also known as weakly Hermitian self-dual
codes. If C⊥H = C, then C is called a Hermitian self-dual code. It is easy to
see that {0} is a Hermitian self-orthogonal code and F

n
q2 is a Hermitian dual-

containing code, which are refered to as the trivial Hermitian self-orthogonal
and trivial Hermitian dual-containing codes, respectively.

For a nonempty subset V of F
n
q2 , we define V q to be the set

V q = {(vq
0 , v

q
1 , . . . , v

q
n−1) : (v0, v1, . . . , vn−1) ∈ V }.

Clearly, if V is a subspace of F
n
q2 , then V q is also a subspace of Fq2 . Moreover,

if (v0, v1, . . . , vn−1), (w0, w1, . . . , wn−1) ∈ V are such that (vq
0 , v

q
1 , . . . , v

q
n−1) =

(wq
0, w

q
1, . . . , w

q
n−1), then for all 0 ≤ j ≤ n − 1, vq

j = wq
j , hence, vj = vq2

j =

wq2

j = wj. It means, (vq
0 , v

q
1, . . . , v

q
n−1) = (wq

0 , w
q
1, . . . , w

q
n−1) ∈ V q if and only

if (v0, v1, . . . , vn−1) = (w0, w1, . . . , wn−1) ∈ V , and therefore, |V | = |V q |.

If C is a q2-ary linear code, then Cq is also a q2-ary linear code, and by
definition, C⊥H = (C⊥)q. Since |C⊥| = |(C⊥)q |, it follows that |C⊥H | = |C⊥|,
i.e., |C|.|C⊥H| = q2n. Furthermore, it is easy to check that (C⊥H )⊥H = C.

Since the Hermitian inner product over Fq is only defined when q is a square,
hereafter, we only consider finite fields whose cardinalities are even powers of
primes. From now on, our finite commutative semi-simple rings are of the form
R = F0 ⊕ F1 ⊕ · · · ⊕ Fk−1, where Fi = Fq2

i
for all i = 0, . . . , k − 1.

Recall that xi ◦Fi yi denotes the Hermitian inner product over Fi for all
i = 0, . . . , k−1. Then the Hermitian inner product over R is defined as x◦Ry =
(x0, . . . , xk−1)∗ (ȳ0, . . . , ȳk−1) = (x0 ◦F0 ȳ0, x1◦F1 ȳ1, . . . , xk−1◦Fk−1 ȳk−1) where
xi = (xi,0, xi,1, . . . , xi,n−1), yi = (yi,0, yi,1, . . . , yi,n−1) for all i = {0, . . . , k − 1}.
The Hermitian dual code of C is defined as C⊥H = {x ∈ Rn|x ◦R ȳ = (x0 ◦F0

ȳ0, x1 ◦F1 ȳ1, . . . , xk−1 ◦Fk−1 ȳk−1) = 0R, ∀y ∈ C}. We get the following result
for the case of Hermitian dual codes.

Proposition 3.5.

(i) For any code C = C1 ⊕C2 of length n over R, its Hermitian dual code is
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C⊥H = ⊕1
i=0C

⊥H

i .

(ii) C is Hermitian self-dual if and only if Ci are Hermitian self-dual for all
i = 0, 1.

(iii) C is Hermitian self-orthogonal if and only if Ci are Hermitian self-orthogonal
for all i = 0, 1.

(iv) C is Hermitian dual-containing if and only if Ci are Hermitian dual-
containing for all i = 0, 1.

(v) C is Hermitian LCD if and only if Ci are Hermitian LCD for all i = 0, 1.

(vi) For any linear code C of length n over R, |C|.|C⊥H| = |Rn|.

Proof. (i): Let (x0, x1, . . . , xk−1) be arbitrary in ⊕k−1
i=0 C⊥H

i . That means, for
0 ≤ i ≤ k − 1, xi ∈ C⊥H

i , and hence, for any c = (c0, c1, . . . , ck−1) ∈ C,

(x0, x1, . . . , xk−1)∗(c̄0, c̄1, . . . , c̄k−1) = (x0◦F0 c̄0, x1◦F1 c̄1, . . . , xk−1◦Fk−1 c̄k−1) = 0R,

implying (x0, x1, . . . , xk−1) ∈ C⊥H . This shows that ⊕k−1
i=0 C⊥H

i ⊆ C⊥H . On
the other hand, for all x = (x0, . . . , xk−1) ∈ C⊥H , we have (x0, . . . , xk−1) ∗
(ȳ0, . . . , ȳk−1) = (x0◦F0 ȳ0, . . . , xk−1◦Fk−1 ȳk−1) = 0R, for all y = (y0 , y1, . . . , yk−1) ∈
C. Note that xi = (xi,0, . . . , xi,n−1), ȳi = (ȳi,0, . . . , ȳi,n−1) ∈ Ci, for all i =
0, . . . , k − 1. Since xi ◦Fi ȳi = 0Fi , for any ȳi ∈ Ci, we have xi ∈ C⊥H

i

for all i = 0, . . . , k − 1. This means that x ∈ ⊕k−1
i=0 C⊥H

i . It follows that
C⊥H ⊆ ⊕k−1

i=0 C⊥H

i . Hence C⊥H = ⊕k−1
i=0 C⊥H

i .

(ii), (iii), (iv) and (v) are straightforward to see from (i).

(vi): From (i), we have |C⊥H | =
∏k−1

i=0 |C⊥H

i | =
∏k−1

i=0
|q2n

i |
|Ci| = (∏k−1

i=0 q2
i )

n

∏k−1
i=0 |Ci| =

|Rn|
|C| . Therefore, |C|.|C⊥H | = |Rn|. �

For a monic polynomial f(x) ∈ Fq2 [x] of degree k with f(0) 	= 0, the
reciprocal polynomial of f(x) denoted by f(x)� is f(0)−1xkf(x−1). Observe
that the automorphism α of Fq2 given by α(a) = ā = aq can be extended

to an automorphism ϕ of Fq2 [x] in an obvious way ϕ(f(x)) = ϕ(
n∑

i=0

aix
i) =

n∑

i=0

āix
i. We put f(x) =

n∑

i=0

āix
i. Recall from [5] that a monic polynomial

f(x) in Fq2 [x] with f(0) 	= 0 is called conjugate-self-reciprocal if f(x) = f(x)
�
.

[5] gave necessary and sufficient conditions for the existence of a nontrivial
Hermitian dual-containing λ-constacyclic code of length n over Fq2 as follows.
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Theorem 3.6. [5, Theorem 2.9] Let λ ∈ F
�
q2 satisfy λ = λ̄−1. Nontrivial

Hermitian dual-containing λ-constacyclic codes of length n over Fq2 exist if
and only if there exists at least one conjugate-reciprocal polynomial pair among
the monic irreducible factors of xn − λ over Fq2 .

Using Proposition 3.5 and Theorem 3.6, we obtain necessary and suffi-
cient conditions for the existence of a nontrivial Hermitian dual-containing
λ-constacyclic code of length n over R:

Theorem 3.7. Let C = C1 ⊕ C2 be a λ-constacyclic code of length n over R.

Then C is a Hermitian dual containing code if and only if for each 0 ≤ i ≤
k−1, Ci is a Hermitian dual containing code, if and only if there exists at least
one conjugate-reciprocal polynomial pair among the monic irreducible factors
of xn − λi over Fi.

Many classes of quantum codes have been constructed by different methods.
The following so-called Hermitian construction is one of the important methods
given in [1].

Proposition 3.8. (Hermitian construction) [1] If C is a q2-ary [n, k, d] linear
code such that C⊥H ⊆ C, then there exists a q-ary quantum code with parame-
ters [[n, 2k− n,≥ d]]q.

The Hermitian construction can be extended to quantum codes over R as
follows.

Theorem 3.9. Let C = C1 ⊕ C2 be a λ-constacyclic code of length n over R.

If for each 0 ≤ i ≤ k− 1, Ci is a q2
i -ary [n, k, d]qi linear code such that C⊥H

i ⊆
Ci, then there exists a quantum code over R with parameters ([[n, 2k0 − n,≥
d0]]q0 , [[n, 2k1 − n,≥ d1]]q1, . . . , [[n, 2kk−1− n,≥ dk−1]]qk−1).

Proof. There exists a quantum code Ti over Fi having the parameters [[n, 2ki−
n,≥ di]]qi for each i = 0, . . . , k−1 by Proposition 3.8. Put T = ⊕k−1

i=0 Ti. Then T

is a quantum code over R with parameters ([[n, 2k0−n,≥ d0]]q0 , [[n, 2k1−n,≥
d1]]q1 , . . . , [[n, 2kk−1 − n,≥ dk−1]]qk−1). �

A quantum code satisfying k + 2d = n + 2, i.e. meeting the Quantum
Singleton Bound (cf. Theorem 3.3), namely, C = [n, n − 2d + 2, d], is called
a quantum MDS code. Using the Hermitian construction, we can construct
a quantum MDS code over R from quantum MDS codes over finite fields, as
follows.

Theorem 3.10. Let C = C1 ⊕ C2 be a λ-constacyclic code of length n over
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R. If for each 0 ≤ i ≤ k − 1, Ci is a q2
i -ary [n, ki, di]qi linear code such that

C⊥H

i ⊆ Ci, then there exists a quantum MDS code over R with parameters
([[n, n − 2d0 + 2,≥ d0]]q0, [[n, n − 2d1 + 2,≥ d1]]q1 , . . . , [[n, n − 2dk−1 + 2,≥
dk−1]]qk−1).

Proof. We can see that Ci are linear MDS codes having parameters [[n, n−di+
1, di]]qiover Fq2

i
satisfying C⊥H

i ⊆ Ci for each i = 0, . . . , k − 1. By Hermitian
construction (cf. Proposition 3.8), there exists a quantum MDS code Ti over
Fqi having the parameters [[n, 2(n − di + 1) − n = n − 2di + 2,≥ di]]qi for
each i = 0, . . . , k − 1. Hence T = ⊕k−1

i=0 Ti is a quantum MDS code over R
with parameters ([[n, n− 2d0 + 2,≥ d0]]q0 , [[n, n− 2d1 +2,≥ d1]]q1 , . . . , [[n, n−
2dk−1 + 2,≥ dk−1]]qk−1). �

Example 3.11.

(i) [5, Example 3.8] Let q = 9 and n = 16. Suppose that F
�
81 = 〈θ〉. Put

λ = θ16. We have 4 quantum MDS codes with parameters [[16, 8, 5]]9,
[[16, 10, 4]]9, [[16, 12, 3]]9, [[16, 14, 2]]9.

(ii) [23, Example 3.3] Let q2 = 81 and n = 40. We have 5 quantum MDS
codes with parameters [[40, 32, 5]]9, [[40, 30, 6]]9,

[[40, 28, 7]]9, [[40, 26, 8]]9, and [[40, 24, 9]]9.

Example 3.12. Suppose that F
�
81 = 〈θ〉. Put λ = θ16 and let C1, C2 be

quantum MDS codes with the parameters [[16, 8, 5]]9, [[16, 10, 4]]9 respectively.
We consider the ring R = F81+vF81 . By Theorem 5.10, we can see that Ci⊕Cj

for all i, j = 1, . . . , 4 are quantum MDS codes over R = F81 + vF81.

Example 3.13 We now consider the semi-simple ring: R = F2 + vF2 and
n = 7. We can see that C = C1 ⊕ C2 = 〈g(x)〉 = 〈(g0(x), g1(x))〉 is a cyclic
code over R, where g0(x) = x − 1, g1(x) = x − 1. Over F2, x7 − 1 can be
written as (x−1)2. From this, we can compute |C| = 22.2−deg(g0(x)−deg(g1(x))) =
228−1−1 = 226. This implies that the dimension of cyclic code C is k = 26. The
reciprocal of g∗0(x) = g∗1(x) = 1 − x. We have Ci = 〈gi(x)〉 contains its dual
because xn − 1 ≡ 0 (mod gi(x)g∗i (x)) for all i = 0, 1. Hence, C⊥ ⊆ C. It
is easy to verify that Hamming distance of cyclic code C is 2. Therefore, by
applying Theorem 3.1 (CSS construction), we can obtain a quantum code with
parameters [[2n, 2k− 2n, d]] = [[14, 38, 2]] over F2.

We end this section by an important remark.

Remark 3.14. Quantum codes over the ring R = Fq + vFq where v2 = v
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using CSS construction can be extended to [4]. However, quantum MDS codes
using Hermitian construction over the ring R = Fq + vFq where q is a square
and vq = v have not been studied in the past. In our paper, we solved a special
case. The general case can be investigated in another paper.
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