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Abstract

The locating-chromatic number of a graph G can be defined as the
cardinality of a minimum ordered partition Π of the vertex set V (G)
such that every vertex in G has the different coordinates with respect
to Π and every two adjacent vertices in G are not included in the same
partition class. In this case, the coordinate of a vertex v is defined as
the distances from vertex v to the ordered partition classes in Π. In this
paper, we discuss the locating-chromatic number for a corona product of
two graphs.

1 Introduction

The concept of graph locating-chromatic number was introduced by Chartrand,
Erwin, Henning, Slater and Zhang [3] in 2002, as a marriage between two pre-
vious big concepts in graph, namely graph coloring and graph partition di-
mension. Let G = (V, E) be a connected graph. The distance d(u, v) between
vertices u and v in G is the length of a shortest path connecting u and v in G.
For v ∈ V (G) and S ⊂ E(G), the distance d(v, S) from u to S is defined as
min{d(v, x)|x ∈ S}. In particular, if d(x, S) �= d(y, S) then we shall say that x
and y are distinguished by S or x and y are distinguishable. Let c be a proper
k-coloring of V (G) which induces an ordered partition Π = {S1, S2, · · · , Sk}
of V (G), where Si is the set of all vertices colored by i in G. The color code
cΠ(v) of vertex v is the ordered k-tuple (d(v, S1), d(v, S2), · · · , d(v, Sk)), where
d(v, Si) = min{d(v, x)|x ∈ Si} for 1 ≤ i ≤ k. If every two vertices have different
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color codes then c is called a locating k-coloring of G. The locating-chromatic
number of graph G, denoted by χL(G), is the smallest integer k such that G
has a locating k-coloring.

The problem of determining the locating-chromatic number of any general
graph is an NP-hard problem. This means that no efficient algorithm to de-
termine the locating-chromatic number of any given graph. Therefore, some
heuristics methods have been developed to determine these numbers. Some
studies have also been done by applying to certain classes of graphs, such as
paths, cycles, certain trees and others. Characterization studies for all graphs
having a specific locating-chromatic number have also carried out. However,
the results are still very limited and not yet satisfactory. Some are presented
below.

Chartrand et al. [3] have determined the locating-chromatic numbers of some
well-known classes such as paths, cycles, complete multipartite graphs and dou-
ble stars. Furthermore, in [4] they showed the existence of a tree of order n(≥ 5)
having the locating-chromatic number k if and only if k ∈ {3, 4, ..., n− 2, n}.

In [2], Asmiati et al. have managed to determine the locating-chromatic num-
ber for a special class of tree, namely an amalgamation of n stars that are
not necessarily isomorphic. Furthermore, in [1], they determined the locating-
chromatic number for a firecrackers graph, i.e. a special tree constructed from
n stars by connecting one leaf from each star to form a path Pn.

For any given graphs G and H , define the corona product G � H between
G and H as the graph obtained from G and H by taking one copy of G
and |V (G)| copies of H and then joining all the vertices of the ith-copy of H
with the ith-vertex of G. Therefore, if V (G) = {x1, x2, · · · , xn} and V (H) =
{a1, a2, · · · , am} then V (G � H) = V (G) ∪ V (H1) ∪ V (H2) ∪ · · · ∪ V (Hn),
where V (Hi) = {aij|1 ≤ j ≤ m} is the vertex-set of the ith-copy of H ,
and E(G � H) = E(G) ∪ {xiaij |1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {aijaik|1 ≤ i ≤
n, 1 ≤ j < k ≤ m, whenever ajak ∈ E(H)}. For simplicity, for each i,
let Ai = {xi} ∪ {aij|1 ≤ j ≤ m}. In this paper we determine the locating-
chromatic number of G� H .

The following lemma is useful in determining the locating-chromatic number
of a graph G. This lemma is a modification of a similar lemma derived by
Chartrand et al. (2003) in [5].

Lemma 1. Let G be a connected non trivial graph. Let c be a locating coloring
for G and u, v ∈ V (G). If d(u, w) = d(v, w) for all w ∈ V (G) − {u, v}, then u
and v must be in different color.
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2 Results

In this section, we will present the upper bound of the locating-chromatic num-
ber for corona product of two connected graph G � H and the exact value of
the locating-chromatic number for corona product of certain graphs.

Let G and H be connected graphs. Let Hi be the ith-copy of H in G � H .
Because any two vertices u and v of Hi have same distance from other vertices,
then by Lemma 1, we have the following lemma.

Lemma 2. Let G and H be connected graphs. Let Hi be the ith-copy of H in
G � H. Then, any two vertices u and v of Hi can only be distinguished by a
set R such that R ∩ V (Hi) �= ∅.
Firstly we give the upper bound of the locating-chromatic number for corona
product of two connected graphs G � H .

Theorem 1. Let G and H be two connected graphs with diameter of H ≤ 2
then χL(G � H) ≤ χL(G) + χL(H).

Proof. Let ΠG and ΠH be minimum locating colorings of G and H , re-
spectively. Let |V (G)| = n. For i = 1, 2, · · · , n, color/partition all the ver-
tices of each Hi according to ΠH , say {V (Hi)1, V (Hi)2, · · · , V (Hi)s}, where
s = pd(H). Now, consider the coloring/partition Π = Π1∪Π2 on G�H , where
Π1 = {∪n

i=1V (Hi)1,∪n
i=1V (Hi)2, · · · , ∪n

i=1V (Hi)s} and Π2 = ΠG. Next, we
will show that Π is a locating coloring of G�H . Note that since the diameter
of H is at most 2, then the distance of any two vertices u, v ∈ V (Hi), for any
i, under the corona graph G� H is the same as its distance under the original
graph H . Therefore, if the vertices u, v ∈ V (Hi), for any i, are distinguishable
by ΠH then they are distinguishable too by Π1. Let u and v be any two vertices
of G�H . If u, v ∈ V (Hi) then they will be clearly distinguished by ∪n

i=1V (Hi)t

for some t. If u, v ∈ V (G) then they will be distinguished by some set in ΠG.
Now, assume that u ∈ V (Hi) and v ∈ V (G). If u ∈ ∪n

i=1V (Hi)t for some t, then
the distances between u and v to ∪n

i=1V (Hi)t is 0 and 1, respectively. There-
fore, u and v are distinguished. Now, the only case we have not considered is
u ∈ V (Hi) and v ∈ V (Hj), for i �= j. If u, v ∈ ∪n

i=1V (Hi)t for some t then
u, v are distinguished by some set in ΠG since ΠG is a locating coloring for G. �

Now, we consider the corona product G ∼= Pn � Km, where Pn represents
a path of order n and Km is the complete graph on m vertices. Let V (G) =
{x1, x2, · · · , xn}∪V (H1)∪V (H2)∪· · ·∪V (Hn), where V (Hi) = {aij|1 ≤ j ≤ m}
is the vertex-set of the ith-copy of Km. We will show that the upper bound of
Theorem 1 is satisfied by χL(Pn � Km) provided n ≥ 2(m + 2) + 1.

Theorem 2. For n ≥ 1, m ≥ 2, the locating-chromatic number of Pn � Km is
as follows:
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χL(Pn � Km) =

⎧⎨
⎩

m + 1, if n = 1,
m + 2, if 2 ≤ n ≤ 2(m + 2),
m + 3, if n ≥ 2(m + 2) + 1.

Proof. By Lemma 1, every two vertices in V (Hi) must be in different color
classes. Since xi is adjacent to all vertices of Hi, then xi must be in a
different color class other than all the color classes in V (Hi). Therefore,
χL(Pn �Km) ≥ m + 1. If n = 1 then it is clear that χL(Pn �Km) = m + 1. If
n ≥ 2 then in order to have different color codes for each xi we must have
χL(Pn � Km) ≥ m + 2. Now, consider a locating (m + 2)-coloring c on
G ∼= Pn � Km, for n, m ≥ 2. For each i, let Ai = {xi} ∪ V (Hi). Then,
we have the following facts.

Fact 1. No two integers i and j such that c(Ai) = c(Aj) but c(xi) �= c(xj).
This is true since if j = i + 1 and i = 1 then xi and ajk, for some k, will have
the same color codes. If j = i + 1 and i �= 1 then either the vertices (xj and
aik) or (aik and ajl), will have the same color codes, for some k, l. Now, let
j ≥ i+2 and w.l.o.g. let c(Ai) = [1, m+1]. Then, to distinguish vertex xi with
the vertices of Hj we have that xi−1 ∈ Sm or xi+1 ∈ Sm. Similarly, we have
that xj−1 ∈ Sm or xj+1 ∈ Sm. Therefore, there exists two vertices aik and ajl

with the same color codes, for some k, l.

Fact 2. No three integers i, j and k such that c(Ai) = c(Aj)= c(Ak) and
c(xi) = c(xj) = c(xk). Without loss of generality, let c(Ai) = [1, m + 1] and
c(xi) = m. Then, if i < j < k then j ≥ i + 2 and k ≥ j + 2. Therefore,
d(xi, Sm) = 1 or 2. Similarly for xj and xk. This implies that the color codes
of two vertices of {xi, xj, xk} will be the same, a contradiction. Therefore, this
fact holds.

From these two facts, we conclude that in any locating (m + 2)-coloring c on
G, if c(Ai) = c(Aj), for i < j, then c(xi) = c(xj); and we cannot have three
Ais with the same c(Ai). Therefore, a locating (m + 2)-coloring c can only
exists on G if n ≤ 2(m + 2). To show the coloring, let us define the mapping
c : V (Pn � Km) → [1, m + 2] such that:

c(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i, if 1 ≤ i ≤ m + 1;
1, if i = m + 2;
m + 2, if i = m + 3 or i = m + 
m/2� + 4;
3 + 2(i − m − 4), if m is even, m + 4 ≤ i ≤ m + 
m/2� + 3;
2 + 2(i − m − 
m/2� − 5), if m is even, m + 
m/2� + 5 ≤ i ≤ n;
2 + 2(i − m − 4), if m is odd, m + 4 ≤ i ≤ m + 
m/2� + 3;
3 + 2(i − m − 
m/2� − 5), if m is odd, m + 
m/2� + 5 ≤ i ≤ n.
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c(V (Hi)) =
{

[1, m + 2] − {1, m + 2}, if i = m + 3 or i = m + 
m/2� + 4;
[1, m + 2] − {c(xi), c(xi) + 1}, otherwise.

We will show that c is a locating coloring on G ∼= Pn�Km, if 2 ≤ n ≤ 2(m+2).
Let u, v be two vertices in the same color class. If u = xi and v = xj for some
i, j then they will have different color codes. If u = xi and v = ajk for some
i, j, k then 1 = d(u, St) < d(v, St) where t = c(j) + 1 (mod m + 2). If u = aik

and v = ajl for some i, j, k, l then d(u, St) �= d(v, St) where t = c(j) + 1 (mod
m + 2). Therefore c is a locating coloring on G.

Now, consider the case of n ≥ 2(m + 2) + 1. To show the upper bound for this
case, define the mapping c : V (Pn � Km) → [1, m + 3] such that:

c(xi) =

⎧⎨
⎩

m + 3 if i = 1,
2 if i is even,
3 if i is odd and i �= 1,

c(V (Hi)) =
{

[1, m] if i = 1,
[1, m + 2]− {2, 3} otherwise.

In order to show c is a locating coloring on G, we need only to consider the case
of vertices u, v such that d(u, x1) = d(v, x1). This implies that u = aik and
v = xi+1 for some i, k. If i > 1 then u and v must be in different color classes
under c. If i = 1 then d(u, Sm+1) �= d(v, Sm+1). Therefore c is a locating
coloring on G. �

Now, we consider the corona product G ∼= Pn � Km, where Pn represents a
path of order n and Km is the complement of the complete graph on m vertices.
Let the vertex-set V (G) = {xi|1 ≤ i ≤ n}∪{aij|1 ≤ i ≤ n, 1 ≤ j ≤ m} and the
edge-set E(G) = {xi−1xi|2 ≤ i ≤ n} ∪ {xiaij|1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Theorem 3. For n, m ≥ 1, the locating-chromatic number of Pn � Km is as
follows:

χL(Pn � K1) =

⎧⎨
⎩

2, if n = 1
3, if 2 ≤ n ≤ 6
4, if n ≥ 7,

χL(Pn � Km) =
{

m + 1, if m ≥ 2 and 1 ≤ n ≤ m + 1,
m + 2, if m ≥ 2 and n ≥ m + 2.

Proof. Let V (Pn � Km) = {x1, x2, · · · , xn} ∪ V (H1) ∪ V (H2) ∪ · · · ∪ V (Hn),
where V (Hi) = {aij|1 ≤ j ≤ m} is the vertex-set of the ith-copy of Km. Now,
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consider the following two cases.

Case 1. m = 1.
For n = 1, we have P1 �K1

∼= P2, then it is clear that χL(P1 �K1) = 2. Now,
let m = 1 and 2 ≤ n ≤ 6, then clearly χL(Pn � K1) ≥ 3. Figure 1 shows the
locating 3-coloring for this case, therefore χL(Pn � K1) = 3, for 2 ≤ n ≤ 6.

Figure 1: The locating 3-coloring of Pn � K1 for 2 ≤ n ≤ 6.

If n ≥ 7 then define c : V (Pn � K1) → [1, 4] such that:

c(xi) =

⎧⎨
⎩

4 if i = 1,
3 if i is odd and i �= 1,
2 if i is even,

c(ai1) =
{

1 if i = 1 or i is even,
2 otherwise.

The mapping c is a locating coloring on G ∼= Pn�K1, since if d(u, x1) = d(v, x1)
then u = ai1 and v = xi+1 for some i. This implies that u, v ∈ S2 and
1 = d(v, S1) < d(u, S1) = 2. Therefore the color codes of u and v are different.
To show that χL(G) ≥ 4 for n ≥ 7, assume for a contradiction χL(G) = 3, for
n ≥ 7. Let us call a vertex x with distance 1 to other two color classes by a dom-
inant vertex in G. Then, there must be three dominant vertices in G, otherwise
there will be two vertices with the same color code. These three dominant ver-
tices must be in different color classes and they must be the vertices xi, xj, xk,
for some i, j, k and 1 ≤ i < j < k ≤ n. Furthermore, d(xi, xj) and d(xj, xk)
must be odd; and both are at most 3, since w.l.o.g. if d(xi, xj) ≥ 5 then the
color codes of xi+2 and a(i+1)1 are the same, a contradiction. Next, one of these
distances must be 1. Since otherwise (w.l.o.g. if d(xi, xj) = d(xj, xk) = 3), then
either the color codes of xj+1 and aj1 are the same or the color codes of xj−1

and aj1 are the same, a contradiction. Therefore, n < 7, a contradiction. This
concludes the proof of this case. Note that this case has been also proved in [1].
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Case 2. m ≥ 2.
Let 1 ≤ n ≤ m + 1. Since every two vertices aij and aik, for 1 ≤ i ≤ n and
1 ≤ j < k ≤ m, we have d(aij, x) = d(aik, x) for every x ∈ Pn�Km−{aij, aik},
then by Lemma 1, χL(Pn � Km) ≥ m + 1. For the upper bound, we construct
a mapping

c : V (Pn � Km) → [1, m + 1] such that

c(xi) = i, c(V (Hi)) = [1, m + 1]− {i}, for each i.

Then, it is easy to see that c is a locating-coloring of Pn � Km, for m ≥ 2 and
1 ≤ n ≤ m + 1.

Now, let n ≥ m + 2. Again, by Lemma 1, χL(Pn � Km) ≥ m + 1. For a
contradiction, suppose χL(Pn � Km) = m + 1. Since n ≥ m + 2, then there
are two vertices xi, xj ∈ Pn �Km have the same color. Since each of these two
vertices adjacent to m different color vertices, then the color codes of these two
vertices are the same, a contradiction. Hence, χL(Pn � Km) ≥ m + 2. For the
upper bound, we construct the following mapping c : V (Pn�Km) → [1, m+2] :

c(xi) =

⎧⎨
⎩

m + 2 if i = 1,
m + 1 if i is odd and i �= 1,
m if i is even,

c(aij) =
{

j + 1 if i is even and j = m,
j otherwise.

To show that c is a locating coloring of G ∼= Pn�Km, we only need to consider
any two distinct vertices u and v in G satisfying d(u, x1) = d(v, x1). Then,
it implies that u = aij and v = xi+1 for some i and j. In this case, we have
1 = d(v, Sm−1) < d(u, Sm−1) = 2. Therefore, the color codes of u and v are
different. Therefore c is a locating coloring on G. �

Now, we consider the corona product Cn � Km, where Cn represents a cycle
of order n and Km is the complement of the complete graph on m vertices.

Theorem 4. For n, m ≥ 1, the locating-chromatic number of Cn � Km is as
follows:

χL(Cn � K1) =
{

3, if 3 ≤ n ≤ 5
4, if n ≥ 6,

χL(Cn � Km) =
{

m + 1, if m ≥ 2 and 3 ≤ n ≤ m + 1,
m + 2, if m ≥ 2 and n ≥ m + 2.
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Figure 2: The locating 3-coloring of Cn � K1 for 3 ≤ n ≤ 5.

Proof. Let V (Cn � Km) = {x1, x2, · · · , xn} ∪ V (H1) ∪ V (H2) ∪ · · · ∪ V (Hn),
where V (Hi) = {aij|1 ≤ j ≤ m} is the vertex-set of the ith-copy of Km. By
Lemma 1, every two vertices in V (Hi) must be in different color classes. Since
xi is adjacent to all vertices of Hi, then xi must be in a different color class
other than all the color classes in V (Hi). Therefore, χL(Cn � Km) ≥ m + 1.
Now, consider the following two cases.

Case 1. m = 1.
For 3 ≤ n ≤ 5, then it is clear that χL(Cn � K1) ≥ 3. Figure 2 shows the
locating 3-coloring for this case, therefore χL(Cn � K1) = 3, for 3 ≤ n ≤ 5.
If n ≥ 6 then define c : V (Cn � K1) → [1, 4] such that:

c(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if i = 1,
3 if (n and i are odd, i �= 1) or

(n is even, i is odd, 1 < i ≤ 2�n
4 � + 1),

2 if (n is odd and i is even) or
(n is even, i is odd and i > 2�n

4 �+ 1) or
(n is even, i is even and i ≤ n

2
),

1 if n, i are even and i ≥ n
2

+ 1

c(ai1) =

⎧⎨
⎩

1 if (n is odd and all i) or
(n is even, i ≤ 2�n

4 � + 1)
3 if n is even and i > 2�n

4
� + 1.
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The mapping c is a locating coloring on G ∼= Cn � K1, for n ≥ 6 since if
d(u, x1) = d(v, x1) then (i) u = ai1, v = xi+1 for some i, (ii) u = xi, v = xn+1−i,
(iii) u = ai1, v = xn+i−i, or (iv) u = xi, v = a(n+1−i)1. If either (i) or (ii)
holds then the vertices u and v are in the different color classes. If (iii) holds
then 1 = d(v, S2) < d(u, S2) = 2 or u and v are in different color classes. If
(iv) holds then 1 = d(u, S2) < d(v, S2) = 2 or u and v are in different color
classes. Therefore, in any case above the color codes of u and v are different.
Therefore, c is a locating coloring.

To show that χL(G) ≥ 4 for n ≥ 6, assume for a contradiction χL(G) = 3, for
n ≥ 6. Recall, a vertex x is dominant if the distances of x to all other color
classes are 1. Then, if n is odd then there are exactly three dominant vertices
in G, but if n is even then there are exactly two dominant vertices. Otherwise,
there will be two vertices in G with the same color code. These dominant ver-
tices must be in different color classes and they must be the vertices xi, xj, xk,
for some i, j, k and 1 ≤ i < j < k ≤ n. Let lij, ljk, and lki be the length of
shortest paths connecting xi to xj , xj to xk, or xk to xi, which do not pass
xk, xi, or xj, respectively. Then, lij, ljk and lki must be odd; and these are
at most 3, since without loss of generality if lij ≥ 5 then the color codes of
xi+2 and a(i+1)1 are the same, a contradiction. If n is even then the distance
between these two dominant vertices is either 1 or 3. If n is odd then one of
lij , ljk or lki is 1. Since otherwise (w.l.o.g. if lij = ljk = 3), then either the
color codes of xj+1 and aj1 are the same or the color codes of xj−1 and aj1

are the same, a contradiction. Therefore, n ≤ 7. However, if n = 6 then two
neighbors of the dominant vertex xi will have the same color code. If n = 7
and lij = ljk = 1 then the color codes of xi−2 and a(i−1)1 are the same, a
contradiction. If n = 7 and lij = 1 and ljk = 3 then the color codes of two
neighbors of the dominant vertex xk are the same, a contradiction. Therefore,
this concludes that χL(G) ≥ 4 for n ≥ 6.

Case 2. m > 1.
For 3 ≤ n ≤ m + 1, define c1 : V (Cn � Km) → [1, m + 1] such that:
c1(xi) = i and c1(V (Hi)) = [1, m + 1] − {i}, for each i, where c1(V (Hi)) =
{c1(ai1), c1(ai2), · · · , c1(aim)}. It is clear that c1 is a locating coloring of
Cn �Km. Now, if n ≥ m+2 then it is clear that χL(Cn �Km) ≥ m+2, since
otherwise there are two distinct vertices xi and xj in the same partition class.
This will imply that the color codes of these vertices are the same, a contra-
diction. To show the upper bound, define c2 : V (Cn � Km) → [1, m + 2] such
that: c2(x1) = m + 2, c2(H1) = [1, m], and c2(xi) = c(xi), and c2(V (Hi)) =
[1, m + 1] − {c2(xi)}, for all i > 1, where c is the locating coloring in Case 1.
It can be verified that c2 is a locating coloring of Cn � Km for n ≥ m + 2 and
m ≥ 2. �
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Now, we consider the corona product Kn�Km, where Kn represents a complete
graph of order n and Km is the complement of the complete graph on m
vertices.

Theorem 5. For n, m ≥ 1, the locating-chromatic number of Kn � Km is as
follows:

χL(Kn � Km) =
{

m + 1, if n ≤ m + 1
n, if n > m + 1

Proof. Let V (Kn � Km) = {x1, x2, · · · , xn} ∪ V (H1) ∪ V (H2) ∪ · · · ∪ V (Hn),
where V (Hi) = {aij|1 ≤ j ≤ m} is the vertex-set of the ith-copy of Km. By
Lemma 1, every two vertices in V (Hi) must be in different color classes. Since
xi is adjacent to all vertices of Hi, then xi must be in a different color class
other than all the color classes in V (Hi). Therefore, χL(Kn � Km) ≥ m + 1.
If n ≤ m + 1 then define a mapping c on V (Kn �Km) such that c(xi) = i and
c(V (Hi)) = [1, m + 1] − {i} for each i. This mapping c is a locating coloring.
Therefore, χL(Kn � Km) = m + 1 for n ≤ m + 1.

Now, consider n > m +1. Since every two xis must be in different classes then
χL(Kn � Km) ≥ n. By constructing a mapping c such that

c(xi) = i,

c(V (Hi)) =
{

[1, m + 1] − {i} if i ≤ m + 1,
[1, m] otherwise,

we will show that c is a locating coloring. If d(u, x1) = d(v, x1) then we have:
(i) u = xk and v = xl for some k, l; (ii) u = xi and v = a1k for some i �= 1
and k, or (iii) u = ait and v = ajs for some i, j, t, s. If (i) holds then u and
v must be in different classes. If (ii) holds then d(u, Si−1) �= d(v, Si−1). If
(iii) holds then d(u, Si) �= d(v, Si). Therefore, c is a locating coloring and so
χL(Kn � Km) = n. �

Now, we consider the corona product Kn�Km , where Kn represents a complete
graph of order n and Km is the complete graph on n vertices.

Theorem 6. For n, m ≥ 1, the locating-chromatic number of Kn � Km is as
follows:

χL(Kn � Km) =

⎧⎨
⎩

m + 1, if n = 1
m + 2, if 2 ≤ n ≤ m + 2
n, if n > m + 2.
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Proof. Let V (Kn � Km) = {x1, x2, · · · , xn} ∪ V (H1) ∪ V (H2) ∪ · · · ∪ V (Hn),
where V (Hi) = {aij|1 ≤ j ≤ m} is the vertex-set of the ith-copy of Km.
By Lemma 1, every two vertices in V (Hi) must be in different color classes.
Furthermore, xi is adjacent to all vertices of Hi. Then, xi is in a different color
class other than all color classes in V (Hi). Therefore, χL(Kn � Km) ≥ m + 1.
If n = 1 then it is clear that χL(Kn � Km) = m + 1. If 2 ≤ n ≤ m + 2 then
χL(Kn � Km) ≥ m + 2. Let us define a mapping c satisfying:

c(xi) = i,

c(V (Hi)) =
{

[1, m + 2] − {i, i + 1} if i �= m + 2,
[1, m + 2] − {1, i} otherwise.

Now, we will show that c is a locating coloring on Kn � Km. If d(u, x1) =
d(v, x1) then we have: (i) u = xk and v = xl for some k, l; (ii) u = xi and v =
a1k for some i �= 1 and k, or (iii) u = ait and v = ajs for some i, j, t, s. If (i) holds
then u and v must be in different classes. If (ii) holds then d(u, S2) �= d(v, S2).
If (iii) holds then d(u, Si+1) �= d(v, Si+1) or d(u, S1) �= d(v, S1). Therefore, c is
a locating coloring and so χL(Kn � Km) = m + 2 for 2 ≤ n ≤ m + 2.

Next, if n > m+2 then it is clear that χL(Kn �Km) ≥ n. Now, let us define a
mapping c such that c(xi) = i, and c(V (Hi)) = Xi, where Xi is any m-subset
of {1, 2, · · · , n} not containing i and i+1 mod n, for each i. It can be verified
that c is a locating coloring. Therefore χL(Kn � Km) = n. �
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