THE LOCATING-CHROMATIC NUMBER FOR CORONA PRODUCT OF GRAPHS

Edy T. Baskoro* and Ira A. Purwasih ${ }^{\dagger}$
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (ITB)
Jalan Ganesa 10 Bandung, Indonesia
e-mail: * ebaskoro@math.itb.ac.id, ${ }^{\text {个 }}$ ira.apni.p@students.itb.ac.id

Abstract

The locating-chromatic number of a graph G can be defined as the cardinality of a minimum ordered partition Π of the vertex set $V(G)$ such that every vertex in G has the different coordinates with respect to Π and every two adjacent vertices in G are not included in the same partition class. In this case, the coordinate of a vertex v is defined as the distances from vertex v to the ordered partition classes in Π. In this paper, we discuss the locating-chromatic number for a corona product of two graphs.

1 Introduction

The concept of graph locating-chromatic number was introduced by Chartrand, Erwin, Henning, Slater and Zhang [3] in 2002, as a marriage between two previous big concepts in graph, namely graph coloring and graph partition dimension. Let $G=(V, E)$ be a connected graph. The distance $d(u, v)$ between vertices u and v in G is the length of a shortest path connecting u and v in G. For $v \in V(G)$ and $S \subset E(G)$, the distance $d(v, S)$ from u to S is defined as $\min \{d(v, x) \mid x \in S\}$. In particular, if $d(x, S) \neq d(y, S)$ then we shall say that x and y are distinguished by S or x and y are distinguishable. Let c be a proper k-coloring of $V(G)$ which induces an ordered partition $\Pi=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$ of $V(G)$, where S_{i} is the set of all vertices colored by i in G. The color code $c_{\Pi}(v)$ of vertex v is the ordered k-tuple $\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \cdots, d\left(v, S_{k}\right)\right)$, where $d\left(v, S_{i}\right)=\min \left\{d(v, x) \mid x \in S_{i}\right\}$ for $1 \leq i \leq k$. If every two vertices have different

Key words: locating-chromatic number, corona graph. 2000 AMS Mathematics Subject Classification: 05C15
color codes then c is called a locating k-coloring of G. The locating-chromatic number of graph G, denoted by $\chi_{L}(G)$, is the smallest integer k such that G has a locating k-coloring.

The problem of determining the locating-chromatic number of any general graph is an NP-hard problem. This means that no efficient algorithm to determine the locating-chromatic number of any given graph. Therefore, some heuristics methods have been developed to determine these numbers. Some studies have also been done by applying to certain classes of graphs, such as paths, cycles, certain trees and others. Characterization studies for all graphs having a specific locating-chromatic number have also carried out. However, the results are still very limited and not yet satisfactory. Some are presented below.

Chartrand et al. [3] have determined the locating-chromatic numbers of some well-known classes such as paths, cycles, complete multipartite graphs and double stars. Furthermore, in [4] they showed the existence of a tree of order $n(\geq 5)$ having the locating-chromatic number k if and only if $k \in\{3,4, \ldots, n-2, n\}$.

In [2], Asmiati et al. have managed to determine the locating-chromatic number for a special class of tree, namely an amalgamation of n stars that are not necessarily isomorphic. Furthermore, in [1], they determined the locatingchromatic number for a firecrackers graph, i.e. a special tree constructed from n stars by connecting one leaf from each star to form a path P_{n}.

For any given graphs G and H, define the corona product $G \odot H$ between G and H as the graph obtained from G and H by taking one copy of G and $|V(G)|$ copies of H and then joining all the vertices of the $i^{\text {th }}$-copy of H with the $i^{\text {th }}$-vertex of G. Therefore, if $V(G)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and $V(H)=$ $\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ then $V(G \odot H)=V(G) \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \cdots \cup V\left(H_{n}\right)$, where $V\left(H_{i}\right)=\left\{a_{i j} \mid 1 \leq j \leq m\right\}$ is the vertex-set of the $i^{t h}$-copy of H, and $E(G \odot H)=E(G) \cup\left\{x_{i} a_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{a_{i j} a_{i k} \mid 1 \leq i \leq\right.$ $n, 1 \leq j<k \leq m$, whenever $\left.a_{j} a_{k} \in E(H)\right\}$. For simplicity, for each i, let $A_{i}=\left\{x_{i}\right\} \cup\left\{a_{i j} \mid 1 \leq j \leq m\right\}$. In this paper we determine the locatingchromatic number of $G \odot H$.

The following lemma is useful in determining the locating-chromatic number of a graph G. This lemma is a modification of a similar lemma derived by Chartrand et al. (2003) in [5].

Lemma 1. Let G be a connected non trivial graph. Let c be a locating coloring for G and $u, v \in V(G)$. If $d(u, w)=d(v, w)$ for all $w \in V(G)-\{u, v\}$, then u and v must be in different color.

2 Results

In this section, we will present the upper bound of the locating-chromatic number for corona product of two connected graph $G \odot H$ and the exact value of the locating-chromatic number for corona product of certain graphs.

Let G and H be connected graphs. Let H_{i} be the $i^{t h}$-copy of H in $G \odot H$. Because any two vertices u and v of H_{i} have same distance from other vertices, then by Lemma 1, we have the following lemma.

Lemma 2. Let G and H be connected graphs. Let H_{i} be the $i^{\text {th }}$-copy of H in $G \odot H$. Then, any two vertices u and v of H_{i} can only be distinguished by a set R such that $R \cap V\left(H_{i}\right) \neq \emptyset$.

Firstly we give the upper bound of the locating-chromatic number for corona product of two connected graphs $G \odot H$.
Theorem 1. Let G and H be two connected graphs with diameter of $H \leq 2$ then $\chi_{L}(G \odot H) \leq \chi_{L}(G)+\chi_{L}(H)$.
Proof. Let Π_{G} and Π_{H} be minimum locating colorings of G and H, respectively. Let $|V(G)|=n$. For $i=1,2, \cdots, n$, color/partition all the vertices of each H_{i} according to Π_{H}, say $\left\{V\left(H_{i}\right)^{1}, V\left(H_{i}\right)^{2}, \cdots, V\left(H_{i}\right)^{s}\right\}$, where $s=p d(H)$. Now, consider the coloring/partition $\Pi=\Pi_{1} \cup \Pi_{2}$ on $G \odot H$, where $\Pi_{1}=\left\{\cup_{i=1}^{n} V\left(H_{i}\right)^{1}, \cup_{i=1}^{n} V\left(H_{i}\right)^{2}, \cdots, \cup_{i=1}^{n} V\left(H_{i}\right)^{s}\right\}$ and $\Pi_{2}=\Pi_{G}$. Next, we will show that Π is a locating coloring of $G \odot H$. Note that since the diameter of H is at most 2 , then the distance of any two vertices $u, v \in V\left(H_{i}\right)$, for any i, under the corona graph $G \odot H$ is the same as its distance under the original graph H. Therefore, if the vertices $u, v \in V\left(H_{i}\right)$, for any i, are distinguishable by Π_{H} then they are distinguishable too by Π_{1}. Let u and v be any two vertices of $G \odot H$. If $u, v \in V\left(H_{i}\right)$ then they will be clearly distinguished by $\cup_{i=1}^{n} V\left(H_{i}\right)^{t}$ for some t. If $u, v \in V(G)$ then they will be distinguished by some set in Π_{G}. Now, assume that $u \in V\left(H_{i}\right)$ and $v \in V(G)$. If $u \in \cup_{i=1}^{n} V\left(H_{i}\right)^{t}$ for some t, then the distances between u and v to $\cup_{i=1}^{n} V\left(H_{i}\right)^{t}$ is 0 and 1 , respectively. Therefore, u and v are distinguished. Now, the only case we have not considered is $u \in V\left(H_{i}\right)$ and $v \in V\left(H_{j}\right)$, for $i \neq j$. If $u, v \in \cup_{i=1}^{n} V\left(H_{i}\right)^{t}$ for some t then u, v are distinguished by some set in Π_{G} since Π_{G} is a locating coloring for G.

Now, we consider the corona product $G \cong P_{n} \odot K_{m}$, where P_{n} represents a path of order n and K_{m} is the complete graph on m vertices. Let $V(G)=$ $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \cdots \cup V\left(H_{n}\right)$, where $V\left(H_{i}\right)=\left\{a_{i j} \mid 1 \leq j \leq m\right\}$ is the vertex-set of the $i^{\text {th }}$-copy of K_{m}. We will show that the upper bound of Theorem 1 is satisfied by $\chi_{L}\left(P_{n} \odot K_{m}\right)$ provided $n \geq 2(m+2)+1$.
Theorem 2. For $n \geq 1, m \geq 2$, the locating-chromatic number of $P_{n} \odot K_{m}$ is as follows:

$$
\chi_{L}\left(P_{n} \odot K_{m}\right)= \begin{cases}m+1, & \text { if } n=1 \\ m+2, & \text { if } 2 \leq n \leq 2(m+2) \\ m+3, & \text { if } n \geq 2(m+2)+1\end{cases}
$$

Proof. By Lemma 1, every two vertices in $V\left(H_{i}\right)$ must be in different color classes. Since x_{i} is adjacent to all vertices of H_{i}, then x_{i} must be in a different color class other than all the color classes in $V\left(H_{i}\right)$. Therefore, $\chi_{L}\left(P_{n} \odot K_{m}\right) \geq m+1$. If $n=1$ then it is clear that $\chi_{L}\left(P_{n} \odot K_{m}\right)=m+1$. If $n \geq 2$ then in order to have different color codes for each x_{i} we must have $\chi_{L}\left(P_{n} \odot K_{m}\right) \geq m+2$. Now, consider a locating $(m+2)$-coloring c on $G \cong P_{n} \odot K_{m}$, for $n, m \geq 2$. For each i, let $A_{i}=\left\{x_{i}\right\} \cup V\left(H_{i}\right)$. Then, we have the following facts.

Fact 1. No two integers i and j such that $c\left(A_{i}\right)=c\left(A_{j}\right)$ but $c\left(x_{i}\right) \neq c\left(x_{j}\right)$. This is true since if $j=i+1$ and $i=1$ then x_{i} and $a_{j k}$, for some k, will have the same color codes. If $j=i+1$ and $i \neq 1$ then either the vertices $\left(x_{j}\right.$ and $a_{i k}$) or ($a_{i k}$ and $a_{j l}$), will have the same color codes, for some k, l. Now, let $j \geq i+2$ and w.l.o.g. let $c\left(A_{i}\right)=[1, m+1]$. Then, to distinguish vertex x_{i} with the vertices of H_{j} we have that $x_{i-1} \in S_{m}$ or $x_{i+1} \in S_{m}$. Similarly, we have that $x_{j-1} \in S_{m}$ or $x_{j+1} \in S_{m}$. Therefore, there exists two vertices $a_{i k}$ and $a_{j l}$ with the same color codes, for some k, l.

Fact 2. No three integers i, j and k such that $c\left(A_{i}\right)=c\left(A_{j}\right)=c\left(A_{k}\right)$ and $c\left(x_{i}\right)=c\left(x_{j}\right)=c\left(x_{k}\right)$. Without loss of generality, let $c\left(A_{i}\right)=[1, m+1]$ and $c\left(x_{i}\right)=m$. Then, if $i<j<k$ then $j \geq i+2$ and $k \geq j+2$. Therefore, $d\left(x_{i}, S_{m}\right)=1$ or 2 . Similarly for x_{j} and x_{k}. This implies that the color codes of two vertices of $\left\{x_{i}, x_{j}, x_{k}\right\}$ will be the same, a contradiction. Therefore, this fact holds.

From these two facts, we conclude that in any locating $(m+2)$-coloring c on G, if $c\left(A_{i}\right)=c\left(A_{j}\right)$, for $i<j$, then $c\left(x_{i}\right)=c\left(x_{j}\right)$; and we cannot have three $A_{i} \mathrm{~s}$ with the same $c\left(A_{i}\right)$. Therefore, a locating $(m+2)$-coloring c can only exists on G if $n \leq 2(m+2)$. To show the coloring, let us define the mapping $c: V\left(P_{n} \odot K_{m}\right) \rightarrow[1, m+2]$ such that:

$$
c\left(x_{i}\right)= \begin{cases}i, & \text { if } 1 \leq i \leq m+1 ; \\ 1, & \text { if } i=m+2 \\ m+2, & \text { if } i=m+3 \text { or } i=m+\lceil m / 2\rceil+4 ; \\ 3+2(i-m-4), & \text { if } m \text { is even, } m+4 \leq i \leq m+\lceil m / 2\rceil+3 \\ 2+2(i-m-\lceil m / 2\rceil-5), & \text { if } m \text { is even, } m+\lceil m / 2\rceil+5 \leq i \leq n \\ 2+2(i-m-4), & \text { if } m \text { is odd, } m+4 \leq i \leq m+\lceil m / 2\rceil+3 \\ 3+2(i-m-\lceil m / 2\rceil-5), & \text { if } m \text { is odd, } m+\lceil m / 2\rceil+5 \leq i \leq n\end{cases}
$$

$$
c\left(V\left(H_{i}\right)\right)= \begin{cases}{[1, m+2]-\{1, m+2\},} & \text { if } i=m+3 \text { or } i=m+\lceil m / 2\rceil+4 ; \\ {[1, m+2]-\left\{c\left(x_{i}\right), c\left(x_{i}\right)+1\right\}, \text { otherwise }}\end{cases}
$$

We will show that c is a locating coloring on $G \cong P_{n} \odot K_{m}$, if $2 \leq n \leq 2(m+2)$. Let u, v be two vertices in the same color class. If $u=x_{i}$ and $v=x_{j}$ for some i, j then they will have different color codes. If $u=x_{i}$ and $v=a_{j k}$ for some i, j, k then $1=d\left(u, S_{t}\right)<d\left(v, S_{t}\right)$ where $t=c(j)+1(\bmod m+2)$. If $u=a_{i k}$ and $v=a_{j l}$ for some i, j, k, l then $d\left(u, S_{t}\right) \neq d\left(v, S_{t}\right)$ where $t=c(j)+1(\bmod$ $m+2)$. Therefore c is a locating coloring on G.

Now, consider the case of $n \geq 2(m+2)+1$. To show the upper bound for this case, define the mapping $c: V\left(P_{n} \odot K_{m}\right) \rightarrow[1, m+3]$ such that:

$$
\begin{gathered}
c\left(x_{i}\right)= \begin{cases}m+3 & \text { if } i=1 \\
2 & \text { if } i \text { is even } \\
3 & \text { if } i \text { is odd and } i \neq 1,\end{cases} \\
c\left(V\left(H_{i}\right)\right)= \begin{cases}{[1, m]} & \text { if } i=1, \\
{[1, m+2]-\{2,3\}} & \text { otherwise }\end{cases}
\end{gathered}
$$

In order to show c is a locating coloring on G, we need only to consider the case of vertices u, v such that $d\left(u, x_{1}\right)=d\left(v, x_{1}\right)$. This implies that $u=a_{i k}$ and $v=x_{i+1}$ for some i, k. If $i>1$ then u and v must be in different color classes under c. If $i=1$ then $d\left(u, S_{m+1}\right) \neq d\left(v, S_{m+1}\right)$. Therefore c is a locating coloring on G.

Now, we consider the corona product $G \cong P_{n} \odot \bar{K}_{m}$, where P_{n} represents a path of order n and \bar{K}_{m} is the complement of the complete graph on m vertices. Let the vertex-set $V(G)=\left\{x_{i} \mid 1 \leq i \leq n\right\} \cup\left\{a_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and the edge-set $E(G)=\left\{x_{i-1} x_{i} \mid 2 \leq i \leq n\right\} \cup\left\{x_{i} a_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$.

Theorem 3. For $n, m \geq 1$, the locating-chromatic number of $P_{n} \odot \bar{K}_{m}$ is as follows:

$$
\begin{gathered}
\chi_{L}\left(P_{n} \odot \bar{K}_{1}\right)= \begin{cases}2, & \text { if } n=1 \\
3, & \text { if } 2 \leq n \leq 6 \\
4, & \text { if } n \geq 7,\end{cases} \\
\chi_{L}\left(P_{n} \odot \bar{K}_{m}\right)= \begin{cases}m+1, & \text { if } m \geq 2 \text { and } 1 \leq n \leq m+1, \\
m+2, & \text { if } m \geq 2 \text { and } n \geq m+2 .\end{cases}
\end{gathered}
$$

Proof. Let $V\left(P_{n} \odot \bar{K}_{m}\right)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \cdots \cup V\left(H_{n}\right)$, where $V\left(H_{i}\right)=\left\{a_{i j} \mid 1 \leq j \leq m\right\}$ is the vertex-set of the $i^{t h}$-copy of \bar{K}_{m}. Now,
consider the following two cases.
Case 1. $m=1$.
For $n=1$, we have $P_{1} \odot \bar{K}_{1} \cong P_{2}$, then it is clear that $\chi_{L}\left(P_{1} \odot \bar{K}_{1}\right)=2$. Now, let $m=1$ and $2 \leq n \leq 6$, then clearly $\chi_{L}\left(P_{n} \odot \bar{K}_{1}\right) \geq 3$. Figure 1 shows the locating 3-coloring for this case, therefore $\chi_{L}\left(P_{n} \odot \bar{K}_{1}\right)=3$, for $2 \leq n \leq 6$.

Figure 1: The locating 3-coloring of $P_{n} \odot \bar{K}_{1}$ for $2 \leq n \leq 6$.
If $n \geq 7$ then define $c: V\left(P_{n} \odot \bar{K}_{1}\right) \rightarrow[1,4]$ such that:

$$
\begin{aligned}
& c\left(x_{i}\right)= \begin{cases}4 & \text { if } i=1, \\
3 & \text { if } i \text { is odd and } i \neq 1, \\
2 & \text { if } i \text { is even },\end{cases} \\
& c\left(a_{i 1}\right)= \begin{cases}1 & \text { if } i=1 \text { or } i \text { is even } \\
2 & \text { otherwise }\end{cases}
\end{aligned}
$$

The mapping c is a locating coloring on $G \cong P_{n} \odot \bar{K}_{1}$, since if $d\left(u, x_{1}\right)=d\left(v, x_{1}\right)$ then $u=a_{i 1}$ and $v=x_{i+1}$ for some i. This implies that $u, v \in S_{2}$ and $1=d\left(v, S_{1}\right)<d\left(u, S_{1}\right)=2$. Therefore the color codes of u and v are different. To show that $\chi_{L}(G) \geq 4$ for $n \geq 7$, assume for a contradiction $\chi_{L}(G)=3$, for $n \geq 7$. Let us call a vertex x with distance 1 to other two color classes by a dominant vertex in G. Then, there must be three dominant vertices in G, otherwise there will be two vertices with the same color code. These three dominant vertices must be in different color classes and they must be the vertices x_{i}, x_{j}, x_{k}, for some i, j, k and $1 \leq i<j<k \leq n$. Furthermore, $d\left(x_{i}, x_{j}\right)$ and $d\left(x_{j}, x_{k}\right)$ must be odd; and both are at most 3 , since w.l.o.g. if $d\left(x_{i}, x_{j}\right) \geq 5$ then the color codes of x_{i+2} and $a_{(i+1) 1}$ are the same, a contradiction. Next, one of these distances must be 1. Since otherwise (w.l.o.g. if $d\left(x_{i}, x_{j}\right)=d\left(x_{j}, x_{k}\right)=3$), then either the color codes of x_{j+1} and $a_{j 1}$ are the same or the color codes of x_{j-1} and $a_{j 1}$ are the same, a contradiction. Therefore, $n<7$, a contradiction. This concludes the proof of this case. Note that this case has been also proved in [1].

Case 2. $m \geq 2$.
Let $1 \leq n \leq m+1$. Since every two vertices $a_{i j}$ and $a_{i k}$, for $1 \leq i \leq n$ and $1 \leq j<k \leq m$, we have $d\left(a_{i j}, x\right)=d\left(a_{i k}, x\right)$ for every $x \in P_{n} \odot \bar{K}_{m}-\left\{a_{i j}, a_{i k}\right\}$, then by Lemma 1, $\chi_{L}\left(P_{n} \odot \bar{K}_{m}\right) \geq m+1$. For the upper bound, we construct a mapping

$$
\begin{gathered}
c: V\left(P_{n} \odot \bar{K}_{m}\right) \rightarrow[1, m+1] \text { such that } \\
c\left(x_{i}\right)=i, c\left(V\left(H_{i}\right)\right)=[1, m+1]-\{i\}, \text { for each } i .
\end{gathered}
$$

Then, it is easy to see that c is a locating-coloring of $P_{n} \odot \bar{K}_{m}$, for $m \geq 2$ and $1 \leq n \leq m+1$.

Now, let $n \geq m+2$. Again, by Lemma 1, $\chi_{L}\left(P_{n} \odot \bar{K}_{m}\right) \geq m+1$. For a contradiction, suppose $\chi_{L}\left(P_{n} \odot \bar{K}_{m}\right)=m+1$. Since $n \geq m+2$, then there are two vertices $x_{i}, x_{j} \in P_{n} \odot \bar{K}_{m}$ have the same color. Since each of these two vertices adjacent to m different color vertices, then the color codes of these two vertices are the same, a contradiction. Hence, $\chi_{L}\left(P_{n} \odot \bar{K}_{m}\right) \geq m+2$. For the upper bound, we construct the following mapping $c: V\left(P_{n} \odot \bar{K}_{m}\right) \rightarrow[1, m+2]$:

$$
\begin{aligned}
& c\left(x_{i}\right)= \begin{cases}m+2 & \text { if } i=1 \\
m+1 & \text { if } i \text { is odd and } i \neq 1, \\
m & \text { if } i \text { is even }\end{cases} \\
& c\left(a_{i j}\right)= \begin{cases}j+1 & \text { if } i \text { is even and } j=m \\
j & \text { otherwise }\end{cases}
\end{aligned}
$$

To show that c is a locating coloring of $G \cong P_{n} \odot \bar{K}_{m}$, we only need to consider any two distinct vertices u and v in G satisfying $d\left(u, x_{1}\right)=d\left(v, x_{1}\right)$. Then, it implies that $u=a_{i j}$ and $v=x_{i+1}$ for some i and j. In this case, we have $1=d\left(v, S_{m-1}\right)<d\left(u, S_{m-1}\right)=2$. Therefore, the color codes of u and v are different. Therefore c is a locating coloring on G.

Now, we consider the corona product $C_{n} \odot \bar{K}_{m}$, where C_{n} represents a cycle of order n and \bar{K}_{m} is the complement of the complete graph on m vertices.

Theorem 4. For $n, m \geq 1$, the locating-chromatic number of $C_{n} \odot \bar{K}_{m}$ is as follows:

$$
\begin{gathered}
\chi_{L}\left(C_{n} \odot \bar{K}_{1}\right)= \begin{cases}3, & \text { if } 3 \leq n \leq 5 \\
4, & \text { if } n \geq 6,\end{cases} \\
\chi_{L}\left(C_{n} \odot \bar{K}_{m}\right)= \begin{cases}m+1, & \text { if } m \geq 2 \text { and } 3 \leq n \leq m+1, \\
m+2, & \text { if } m \geq 2 \text { and } n \geq m+2 .\end{cases}
\end{gathered}
$$

$$
C_{3} \odot \overline{K_{1}}
$$

$C_{5} \odot \overline{K_{1}}$

Figure 2: The locating 3-coloring of $C_{n} \odot \bar{K}_{1}$ for $3 \leq n \leq 5$.

Proof. Let $V\left(C_{n} \odot \bar{K}_{m}\right)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \cdots \cup V\left(H_{n}\right)$, where $V\left(H_{i}\right)=\left\{a_{i j} \mid 1 \leq j \leq m\right\}$ is the vertex-set of the $i^{t h}$-copy of \bar{K}_{m}. By Lemma 1, every two vertices in $V\left(H_{i}\right)$ must be in different color classes. Since x_{i} is adjacent to all vertices of H_{i}, then x_{i} must be in a different color class other than all the color classes in $V\left(H_{i}\right)$. Therefore, $\chi_{L}\left(C_{n} \odot \bar{K}_{m}\right) \geq m+1$. Now, consider the following two cases.

Case 1. $m=1$.
For $3 \leq n \leq 5$, then it is clear that $\chi_{L}\left(C_{n} \odot \bar{K}_{1}\right) \geq 3$. Figure 2 shows the locating 3-coloring for this case, therefore $\chi_{L}\left(C_{n} \odot \bar{K}_{1}\right)=3$, for $3 \leq n \leq 5$. If $n \geq 6$ then define $c: V\left(C_{n} \odot \bar{K}_{1}\right) \rightarrow[1,4]$ such that:

$$
\begin{gathered}
c\left(x_{i}\right)= \begin{cases}4 & \text { if } i=1, \\
3 & \text { if }(n \text { and } i \text { are odd, } i \neq 1) \text { or } \\
\left(n \text { is even, } i \text { is odd, } 1<i \leq 2\left\lfloor\frac{n}{4}\right\rfloor+1\right), \\
2 & \text { if }(n \text { is odd and } i \text { is even or } \\
\left(n \text { is even, } i \text { is odd and } i>2\left\lfloor\frac{n}{4}\right\rfloor+1\right) \text { or } \\
1 & \left(n \text { is even, } i \text { is even and } i \leq \frac{n}{2}\right), \\
\text { if } n, i \text { are even and } i \geq \frac{n}{2}+1\end{cases} \\
c\left(a_{i 1}\right)= \begin{cases}1 & \text { if }(n \text { is odd and all } i) \text { or } \\
3 & \left(n \text { is even, } i \leq 2\left\lfloor\frac{n}{4}\right\rfloor+1\right) \\
3 & \text { if } n \text { is even and } i>2\left\lfloor\frac{n}{4}\right\rfloor+1 .\end{cases}
\end{gathered}
$$

The mapping c is a locating coloring on $G \cong C_{n} \odot \bar{K}_{1}$, for $n \geq 6$ since if $d\left(u, x_{1}\right)=d\left(v, x_{1}\right)$ then (i) $u=a_{i 1}, v=x_{i+1}$ for some i, (ii) $u=x_{i}, v=x_{n+1-i}$, (iii) $u=a_{i 1}, v=x_{n+i-i}$, or (iv) $u=x_{i}, v=a_{(n+1-i) 1}$. If either (i) or (ii) holds then the vertices u and v are in the different color classes. If (iii) holds then $1=d\left(v, S_{2}\right)<d\left(u, S_{2}\right)=2$ or u and v are in different color classes. If (iv) holds then $1=d\left(u, S_{2}\right)<d\left(v, S_{2}\right)=2$ or u and v are in different color classes. Therefore, in any case above the color codes of u and v are different. Therefore, c is a locating coloring.

To show that $\chi_{L}(G) \geq 4$ for $n \geq 6$, assume for a contradiction $\chi_{L}(G)=3$, for $n \geq 6$. Recall, a vertex x is dominant if the distances of x to all other color classes are 1 . Then, if n is odd then there are exactly three dominant vertices in G, but if n is even then there are exactly two dominant vertices. Otherwise, there will be two vertices in G with the same color code. These dominant vertices must be in different color classes and they must be the vertices x_{i}, x_{j}, x_{k}, for some i, j, k and $1 \leq i<j<k \leq n$. Let $l_{i j}, l_{j k}$, and $l_{k i}$ be the length of shortest paths connecting x_{i} to x_{j}, x_{j} to x_{k}, or x_{k} to x_{i}, which do not pass x_{k}, x_{i}, or x_{j}, respectively. Then, $l_{i j}, l_{j k}$ and $l_{k i}$ must be odd; and these are at most 3 , since without loss of generality if $l_{i j} \geq 5$ then the color codes of x_{i+2} and $a_{(i+1) 1}$ are the same, a contradiction. If n is even then the distance between these two dominant vertices is either 1 or 3 . If n is odd then one of $l_{i j}, l_{j k}$ or $l_{k i}$ is 1 . Since otherwise (w.l.o.g. if $l_{i j}=l_{j k}=3$), then either the color codes of x_{j+1} and $a_{j 1}$ are the same or the color codes of x_{j-1} and $a_{j 1}$ are the same, a contradiction. Therefore, $n \leq 7$. However, if $n=6$ then two neighbors of the dominant vertex x_{i} will have the same color code. If $n=7$ and $l_{i j}=l_{j k}=1$ then the color codes of x_{i-2} and $a_{(i-1) 1}$ are the same, a contradiction. If $n=7$ and $l_{i j}=1$ and $l_{j k}=3$ then the color codes of two neighbors of the dominant vertex x_{k} are the same, a contradiction. Therefore, this concludes that $\chi_{L}(G) \geq 4$ for $n \geq 6$.

Case 2. $m>1$.
For $3 \leq n \leq m+1$, define $c_{1}: V\left(C_{n} \odot \bar{K}_{m}\right) \rightarrow[1, m+1]$ such that: $c_{1}\left(x_{i}\right)=i$ and $c_{1}\left(V\left(H_{i}\right)\right)=[1, m+1]-\{i\}$, for each i, where $c_{1}\left(V\left(H_{i}\right)\right)=$ $\left\{c_{1}\left(a_{i 1}\right), c_{1}\left(a_{i 2}\right), \cdots, c_{1}\left(a_{i m}\right)\right\}$. It is clear that c_{1} is a locating coloring of $C_{n} \odot \bar{K}_{m}$. Now, if $n \geq m+2$ then it is clear that $\chi_{L}\left(C_{n} \odot \bar{K}_{m}\right) \geq m+2$, since otherwise there are two distinct vertices x_{i} and x_{j} in the same partition class. This will imply that the color codes of these vertices are the same, a contradiction. To show the upper bound, define $c_{2}: V\left(C_{n} \odot \bar{K}_{m}\right) \rightarrow[1, m+2]$ such that: $c_{2}\left(x_{1}\right)=m+2, c_{2}\left(H_{1}\right)=[1, m]$, and $c_{2}\left(x_{i}\right)=c\left(x_{i}\right)$, and $c_{2}\left(V\left(H_{i}\right)\right)=$ $[1, m+1]-\left\{c_{2}\left(x_{i}\right)\right\}$, for all $i>1$, where c is the locating coloring in Case 1. It can be verified that c_{2} is a locating coloring of $C_{n} \odot \bar{K}_{m}$ for $n \geq m+2$ and $m \geq 2$.

Now, we consider the corona product $K_{n} \odot \bar{K}_{m}$, where K_{n} represents a complete graph of order n and \bar{K}_{m} is the complement of the complete graph on m vertices.

Theorem 5. For $n, m \geq 1$, the locating-chromatic number of $K_{n} \odot \bar{K}_{m}$ is as follows:

$$
\chi_{L}\left(K_{n} \odot \bar{K}_{m}\right)= \begin{cases}m+1, & \text { if } n \leq m+1 \\ n, & \text { if } n>m+1\end{cases}
$$

Proof. Let $V\left(K_{n} \odot \bar{K}_{m}\right)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \cdots \cup V\left(H_{n}\right)$, where $V\left(H_{i}\right)=\left\{a_{i j} \mid 1 \leq j \leq m\right\}$ is the vertex-set of the $i^{t h}$-copy of \bar{K}_{m}. By Lemma 1, every two vertices in $V\left(H_{i}\right)$ must be in different color classes. Since x_{i} is adjacent to all vertices of H_{i}, then x_{i} must be in a different color class other than all the color classes in $V\left(H_{i}\right)$. Therefore, $\chi_{L}\left(K_{n} \odot \bar{K}_{m}\right) \geq m+1$. If $n \leq m+1$ then define a mapping c on $V\left(K_{n} \odot \bar{K}_{m}\right)$ such that $c\left(x_{i}\right)=i$ and $c\left(V\left(H_{i}\right)\right)=[1, m+1]-\{i\}$ for each i. This mapping c is a locating coloring. Therefore, $\chi_{L}\left(K_{n} \odot \bar{K}_{m}\right)=m+1$ for $n \leq m+1$.

Now, consider $n>m+1$. Since every two x_{i} s must be in different classes then $\chi_{L}\left(K_{n} \odot \bar{K}_{m}\right) \geq n$. By constructing a mapping c such that

$$
\begin{gathered}
c\left(x_{i}\right)=i \\
c\left(V\left(H_{i}\right)\right)= \begin{cases}{[1, m+1]-\{i\}} & \text { if } i \leq m+1 \\
{[1, m]} & \text { otherwise }\end{cases}
\end{gathered}
$$

we will show that c is a locating coloring. If $d\left(u, x_{1}\right)=d\left(v, x_{1}\right)$ then we have: (i) $u=x_{k}$ and $v=x_{l}$ for some k, l; (ii) $u=x_{i}$ and $v=a_{1 k}$ for some $i \neq 1$ and k, or (iii) $u=a_{i t}$ and $v=a_{j s}$ for some i, j, t, s. If (i) holds then u and v must be in different classes. If (ii) holds then $d\left(u, S_{i-1}\right) \neq d\left(v, S_{i-1}\right)$. If (iii) holds then $d\left(u, S_{i}\right) \neq d\left(v, S_{i}\right)$. Therefore, c is a locating coloring and so $\chi_{L}\left(K_{n} \odot K_{m}\right)=n$.

Now, we consider the corona product $K_{n} \odot K_{m}$, where K_{n} represents a complete graph of order n and K_{m} is the complete graph on n vertices.

Theorem 6. For $n, m \geq 1$, the locating-chromatic number of $K_{n} \odot K_{m}$ is as follows:

$$
\chi_{L}\left(K_{n} \odot K_{m}\right)= \begin{cases}m+1, & \text { if } n=1 \\ m+2, & \text { if } 2 \leq n \leq m+2 \\ n, & \text { if } n>m+2\end{cases}
$$

Proof. Let $V\left(K_{n} \odot K_{m}\right)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \cup V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \cdots \cup V\left(H_{n}\right)$, where $V\left(H_{i}\right)=\left\{a_{i j} \mid 1 \leq j \leq m\right\}$ is the vertex-set of the $i^{t h}$-copy of K_{m}. By Lemma 1, every two vertices in $V\left(H_{i}\right)$ must be in different color classes. Furthermore, x_{i} is adjacent to all vertices of H_{i}. Then, x_{i} is in a different color class other than all color classes in $V\left(H_{i}\right)$. Therefore, $\chi_{L}\left(K_{n} \odot K_{m}\right) \geq m+1$. If $n=1$ then it is clear that $\chi_{L}\left(K_{n} \odot K_{m}\right)=m+1$. If $2 \leq n \leq m+2$ then $\chi_{L}\left(K_{n} \odot K_{m}\right) \geq m+2$. Let us define a mapping c satisfying:

$$
\begin{gathered}
c\left(x_{i}\right)=i \\
c\left(V\left(H_{i}\right)\right)= \begin{cases}{[1, m+2]-\{i, i+1\}} & \text { if } i \neq m+2 \\
{[1, m+2]-\{1, i\}} & \text { otherwise }\end{cases}
\end{gathered}
$$

Now, we will show that c is a locating coloring on $K_{n} \odot K_{m}$. If $d\left(u, x_{1}\right)=$ $d\left(v, x_{1}\right)$ then we have: (i) $u=x_{k}$ and $v=x_{l}$ for some k, l; (ii) $u=x_{i}$ and $v=$ $a_{1 k}$ for some $i \neq 1$ and k, or (iii) $u=a_{i t}$ and $v=a_{j s}$ for some i, j, t, s. If (i) holds then u and v must be in different classes. If (ii) holds then $d\left(u, S_{2}\right) \neq d\left(v, S_{2}\right)$. If (iii) holds then $d\left(u, S_{i+1}\right) \neq d\left(v, S_{i+1}\right)$ or $d\left(u, S_{1}\right) \neq d\left(v, S_{1}\right)$. Therefore, c is a locating coloring and so $\chi_{L}\left(K_{n} \odot K_{m}\right)=m+2$ for $2 \leq n \leq m+2$.

Next, if $n>m+2$ then it is clear that $\chi_{L}\left(K_{n} \odot K_{m}\right) \geq n$. Now, let us define a mapping c such that $c\left(x_{i}\right)=i$, and $c\left(V\left(H_{i}\right)\right)=X_{i}$, where X_{i} is any m-subset of $\{1,2, \cdots, n\}$ not containing i and $i+1 \bmod n$, for each i. It can be verified that c is a locating coloring. Therefore $\chi_{L}\left(K_{n} \odot K_{m}\right)=n$.

Acknowledgement This research was supported by Program Riset dan Inovasi KK - ITB and Riset Program Doktor Unggulan I-MHERE, FMIPA - ITB Indonesia, 2011.

References

[1] Asmiati, E.T. Baskoro, H. Assiyatun, D. Suprijanto, R. Simanjuntak, S. Uttunggadewa, The Locating-chromatic number of firecracker graphs, to appear in Far East J. Math. Sci.
[2] Asmiati, H. Assiyatun, E.T. Baskoro, Locating-chromatic number of Amalgamation of stars, ITB Journal of Science, 43A:1 (2011), 1-8.
[3] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zhang, The locatingchromatics number of a graph,Bull. Inst. Combin. Appl., 36 (2002), 89-101.
[4] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zhang, Graph of order n with locating-chromatic number n-1, Discrete Math., 269 (2003), No.1-3, 65-79.
[5] G. Chartrand and P. Zhang, The theory and application of resolvability in graphs, Congressus Numerantium 160 (2003), 47-68.

