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Abstract

Orthogonal arrays (OAs) of strength t (also called t-balanced frac-
tional designs) are difficult to construct, but they have useful properties
that can be employed in the theory of experimental design and in prac-
tical applications to statistical quality management.

Specifically, strength 3 OAs permit estimation of all the main effects of
the experimental factors, without confounding them with the two-factor
interactions. Strength 4 OAs allow us to also separately estimate all two-
factor interactions. These arrays are in great demand not only in well-
known areas like statistical quality control of industries and services [12],
software engineering [13], but also in emerging and fast-developed areas
such as computational biology, drug designs and/or medical sciences, in
particular DNA micro-array experiments [6, 21].

In this paper, we introduce some new methods for constructing mixed
orthogonal arrays of strength t, with a given parameter set of run-size
and factor levels. A few new arrays with run size up to 100 have been
found with the proposed methods.
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1 Introduction

Orthogonal arrays (OAs) with strength t > 1 (also called t-balanced fractional
designs) are difficult to construct, but they have good features which can be
employed in the theory of experimental design, algebraic coding theory, and in
practical applications to statistical quality management [22].

In this paper, we introduce new methods that employ algebraic formulations
to construct mixed OAs with strength t > 1. We recall some recent relevant
works, as well as introduce our theoretic problems in Section 2. In Section 3,
we review the arithmetic formulation and then discuss its modification that
results in an optimal runsize OA. Section 4 recalls some concepts from the
algebraic geometry method for solving our second problem. Next we present
our new method using linear algebra and algebraic geometry in Section 5;
this method results in a necessary condition for constructing mixed orthogonal
arrays (OAs) of arbitrary strength t. Section 6 finally concludes the paper with
few comments.

2 Background and problems

2.1 Background

The following concepts will be used throughout the paper.

Definition 1.

• For a natural number d > 1, we fix d finite sets Q1, Q2, . . . , Qd called
factors. In this paper, each Qi is taken to be a subset of the complex
numbers. The elements of a factor are called its levels. The (full)
factorial design with respect to these factors is the Cartesian product
D = Q1 × Q2 × . . .× Qd.

• A fractional design or fraction F of D is a subset of D (possibly with
multiplicities). We frequently consider F to be a matrix whose rows are
elements of D. Take ri := |Qi| to be the number of levels of the ith factor.
We say that F is symmetric if r1 = r2 = · · · = rd, otherwise F is mixed.

• F is said to be a strength t orthogonal array (OA) or t-balanced if,
for each choice of t coordinates (columns) from F , every combination of
coordinate values from those columns occurs equally often; here t is a
natural number.

Some standard constructions from the theory of orthogonal arrays are re-
viewed in [7] and [9, Section 3.3, pp 28–31].
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Let s1 > s2 > · · · > sm be the distinct factor sizes of F , and suppose that
F has exactly ai factors with si levels. We call the partition

r1 · r2 · · ·rd = sa1
1 · sa2

2 · · · sam
m

the design type of F . We usually take the ri in non increasing order, so that
they are related to the sk by

s1 = r1 = · · · = ra1, s2 = ra1+1 = · · · = ra1+a2, . . . ,

sm = ra1+a2+ ···+am−1+1 = · · · = ra1+a2+···+am = rd.

If F has N rows, we say F has run size N and write

F = OA(N ; sa1
1 · sa2

2 · · ·sam
m ; t).

For example

F =

⎡
⎢⎢⎣

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

⎤
⎥⎥⎦

T

,

is a 4 · 23 mixed orthogonal array of strength 3. We use the following lemma
on run sizes of OAs to narrow down the set of candidate arrays given their
parameters.

Lemma 1 (Divisibility condition). In an OA(N ; r1 ·r2 · · · rd; t), the run size
N must be divisible by the least common multiple (lcm) of all numbers

∏
i∈I ri

where |I| = t.

The most efficient way to construct strength t arrays is by starting with
a full array with t factors, then extending it column by column. So our first
problem is:

Problem 1 (Orthogonal Array Column Extension). Given a strength
t orthogonal array F0 with N runs and d factors, extend it to a strength t
orthogonal array F = [F0|X] with d + 1 factors, where X is a new factor (or
column).

Section 3 presents a modification of our arithmetic method [11] for constructing
OA(64; 44 · 26; 3), an array achieving its optimal run size with respect to the
Rao bound [7].
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2.2 Recent progress

The main aim of experimental design is to identify an unknown function φ :
D → R on the full design D, which is a mathematical model of some quantity
of interest (favor, usefulness, best-buy, quality, ...) that is be computed or
optimized. OAs can provide smaller (and so more economic) fractional designs,
which still allow us to identify the most important features of φ.

A comprehensive reference on the use of orthogonal arrays (OAs) as factorial
design in diverse problems of statistical parameter optimization is provided by
Wu and Hamada [22]. Stufken and Tang [20] provided a complete solution to
enumerating non-isomorphic two-level OAs of strength t with t + 2 constraints
for any t and any run size N = λ 2t. More recently, Bulutoglu and Margot [2]
formulated an integer linear programming (ILP) method for classifying OAs
of strength 3 and 4 with run size at most 162. A few specific construction
methods of OAs have been proposed in Brouwer et al. [1] and Nguyen [11].
Mixed-level OAs of strength 3 with run-size at most 100 are online at [10], and
strength at least 2 at [19].

In this work, we consider computer-algebraic methods, combined in several
ways to construct mixed OAs.

2.3 Overview of algebraic geometry for computing frac-
tional
factorial designs

We follow the terminology of [4, 17]. Recall that the ring F[x] := F[x1, x2, x3, . . . , xd]
consists of multivariate polynomials over some subfield F of the complex field
C. An ideal

J = 〈f1, . . . , fs〉 :=
{ s∑

i=1

hifi where hi ∈ F[x]
}

is called zero-dimensional if its root set Z(J) has a finite number of elements.
Now let J be an ideal of F[x], written J � F[x] and be zero-dimensional. Let

π : F[x] → F[x]/J

be the canonical surjection, we know |Z(J)| = dimF(F[x]/J) < ∞. Fix a
monomial ordering � on terms xα = xα1

1 xα2
2 · · ·xαd

d ∈ F[x], where α =
(α1, α2, . . . , αd) ∈ Nd is a multi-index vector. We write LT(J) for the set
of all leading terms (with respect to that ordering) of polynomials in J . If G
is a Groebner basis of J with respect to the given ordering �, we know that〈
LT(J)

〉
=

〈
LT(G)

〉
, and more importantly Z(J) = Z(G). A set O of mono-

mials is called an order ideal with respect to the ordering � if whenever u ∈ O,
every monomial v � u is also in O.
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Let D = Q1 × . . . × Qd be a full factorial design as in Definition 1. Let
C = {f1, . . . , fd} be the set of canonical polynomials of the factors of D, where
the canonical polynomial associated with a factor Qi is

∏
j∈Qi

(xi − j). For
example, if there are d = 2 factors with level sets Q1 = {0, 1, 2}, Q2 = {0, 1}
then f1(x1) = x1(x1 − 1)(x1 − 2), f2(x2) = x2(x2 − 1). For a fraction F of D,
define the vanishing ideal I(F ) consisting of all polynomials of F[x] that vanish
on F . Note that I(D) = 〈C〉, and since F ⊆ D, we get I(F ) ⊇ I(D). Call

Est(F ) = {xα : xα 
∈ 〈
LT(I(F ))

〉}
the set of estimable terms associated with the fraction F and order �. The set
Est(F ) is always an order ideal. In particular, the complete set of estimable
terms

Est(D) = {xα1
1 xα2

2 . . . xαd

d : αi = 0, 1, . . . , ri − 1, i = 1, . . . , d}
depends only on the type of D (not on the ordering).

For instance, if F = D = {−1, 1}3, we get I(D) = 〈x2
1−1, x2

2−1, x2
3−1〉, lead-

ing terms LT(I(D)) = {x2
1, x

2
2, x

2
3}, and Est(D) = {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}

for any monomial ordering. We can now state our second problem:

Problem 2 (Constructing a fraction with given estimable terms).
Given an order ideal E ⊆ Est(D), compute a fraction F ⊆ D such that E =
Est(F ).

Note that this is equivalent to the condition that E := π(E) is a basis of
the quotient ring F[x]/I(F ) as a F-vector space.

2.4 Relationship with experimental design and industry

Using the polynomial model for φ : D → R, we want to estimate the coeffi-
cients of the main effects (corresponding to linear terms) and interaction effects
(corresponding to higher degree monomials). In their pioneering work [16, 17],
Pistone, Riccomagno and Wynn showed that a fraction F could be used to es-
timate all the effects corresponding to monomials in Est(F ). Problem 2 above,
is essentially the reverse of this procedure. In applications to statistical qual-
ity control, we would take E to be the factor interactions that we think will
effect the product quality. Then we use a fractional factorial design F with
Est(F ) = E to conduct the experiments in practice.

In addition to specifying the estimable terms, we often want to impose or-
thogonality conditions so that the fractions have desirable statistical properties.
So we can now formulate our third problem:

Problem 3 (Constructing a balanced fraction with given estimable
terms).
Given an order ideal E ⊆ Est(D) and integer t > 1, compute a strength t
orthogonal array F ⊆ D such that E ⊆ Est(F ).
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A specific approach for Problem 1 will be described in Section 3, due to
which many OAs at most 100 runs was listed, including an optimal OA(64; 44 ·
26; 3). The second problem was solved by Caboara and Robbiano [3], (see
Chapter 4, Dickenstein-Emiris [5]). In Section 4 we briefly review their method,
then in Section 5 a new method for solving the third problem will be introduced.

3 An arithmetic approach for solving Problem
1

In [1], we listed mixed OAs with at most 64 runs, together with constructions,
but without showing all of the proofs. In Section 2 of Nguyen [11], we formu-
lated an arithmetic method that was used to find arrays OA(96; 6 ·42 ·23; 3) and
OA(96; 3·42·25; 3), but this method could not construct the OA(64; 44·26; 3). In
this section, we give the proof of the construction of the array OA(64; 44 ·26; 3),
listed in [1], using a variation of the arithmetic approach in [11]. First we review
the arithmetic approach.

3.1 Description of the arithmetic method

This method constructs extensions of a full factorial design. Let column Si

correspond to factor Qi, we could rewrite our full design as D = [S1| . . . |Sd],
an unreplicated full factorial design of type r1 · · · rd with d ≥ 3, r1 ≥ r2 ≥ . . . ≥
rd ≥ 2. Choose s ≥ 2 such that s divides N

rirj
for every pair of distinct indices

i, j = 1, . . . , d. We find a column X that makes the extension [S1| . . . |Sd|X] an
OA(N ; r1 ·r2 · · ·rd ·s; 3). As a results, we can find an OA(N ; r1 ·r2 · · ·rd ·sm; 3)
for m > 1. Denote an arbitrary run of D by u := (u1, u2, . . . , ud). Since D is
a full design, the column X is determined by a function

fX : D → Zs, u �→ fX(u).

We call fX the defining function of the column X. We now characterize the
fX such that [D|X] has strength 3. Fix K = {1, 2, 3, . . . , d}, for 1 ≤ i < j ≤ d,
we let

Qij :=
∏

l∈K\{i,j}
Ql, nij :=

N

rirj
, qij :=

nij

s
. (1)

Note that our assumptions (due to the Rao bound and the divisibility con-
dition) on s ensure that every qij is integral. For each (a, b) ∈ [Si|Sj], let

Qab
ij := {u = (u1, u2, . . . , ud) ∈ D : ui = a and uj = b}.

Define fab
ij to be the restriction of f to Qab

ij , considered as a function of the
d − 2 variables

yij := (u1, . . . , ui−1, ui+1, . . . , uj−1, uj+1, . . . ud).
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Lemma 2. If fab
ij is a qij-to-one mapping for all 1 ≤ i < j ≤ d, a ∈ Zri ,

b ∈ Zrj , then [D|X] is a strength 3 orthogonal array.

This simple but useful observation results in few new OAs with run size
between 64 and 100. Among those, OA(64; 44 · 26; 3) is the most interesting
case, since it is optimal with respect to the Rao bound [1, Section 2].

3.2 Construction of the OA(64; 44 · 26; 3)

This design is unique up to isomorphism, given the parameter set of runsize
and factor levels. The next theorem presents a detailed construction of this
array, which was listed as (X5) in [1]. The idea for this construction is due to
Andries Brouwer.

Theorem 1. Let A and B be the subsets {0, 1} and {2, 3} of the cyclic group
Z4 of residues mod 4. An OA(64; 44 · 26; 3) can be obtained by taking all row
vectors

(x1, x2, x3, x4, S1, S2, S3, S4, S5, S6) ∈ Z
4
4 × Z

6
2

satisfying

x1 + x2 + x3 + x4 = 0 (mod 4) and Si =
4∑

j=1

a
(i)
j xj (mod 2)

where the six vectors a(i) for 1 ≤ i ≤ 6 are (0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3),
(0, 2, 3, 1), (0, 3, 1, 2), (0, 3, 2, 1).

Proof . Suppose D is an OA(64; 44 · 26; 3). Let X, Y, Z, W be the four quater-
nary columns, S1 , . . . , S6 the six binary columns of D. Let x, y, z, w denote the
coordinates of a run r corresponding to X, Y, Z, W , and let si be the coordinate
of r corresponding to column Si, i = 1, . . . , 6.

First of all, since any three from four columns X, Y, Z, W suffice to deter-
mine 64 runs, the 4-level part of D can be viewed as a ”quasi” regular design
(since 4 is not a prime) 44−1 determined by a defining relation

x + y + z + w = c (mod 4), for some constant 0 ≤ c ≤ 3. (2)

For instance the first column is a function of the next three columns,

x = 3y + 3z + 3w + c (mod 4).

Similarly, any binary column S of D must be a function of three columns
Y, Z, W , so be determined by a function

f(y, z, w) = c1y + c2z + c3w, (3)

where distinct coefficients cj ∈ Z∗
4 for j = 1, 2, 3. These coefficients cj must

be nonzero since column S depends on three independent columns Y, Z, W (in
fact on any three from the four 4-level columns). Furthermore they must be
distinct, this fact will be justified in the proof of the following lemma. �
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Recall that A = {0, 1}, B = {2, 3}, we put s := f(y, z, w)mod 4, write
XY for the pair of columns (X, Y ), write S ⊥ XY for the fact that a column
S is orthogonal to XY , and write [F |S] for the extended array from an array
F by a column S. We have

Lemma 3.

1. The four quaternary columns defined by (2) gives rise an orthogonal array
F := OA(64; 44; 3).

2. Any binary column S defined by the rule:

S := 0 if s ∈ A; and S := 1 if s ∈ B, (4)

is orthogonal to F , i.e. the extended array [F |S] is an OA(64; 44 · 2; 3).

3. There are totally six distinct functions of the form (4). The binary
columns of D built from these functions form an orthogonal array of
strength 5.

Proof.

1. For t = 3, it follows that any three from four columns X, Y, Z, W , say
Y, Z, W , form a full design and X is orthogonal to pairs of columns
Y Z, Y W, ZW . The latter statement follows from the equation x = 3y+
3z + 3w + c (mod 4), and from the fact that W ⊥ Y Z, Z ⊥ Y W , and
Y ⊥ ZW (i.e. fixing (y, z), there is one-to-one correspondence between
w and x).

2. We show that column S built by the function

f(y, z, w) = c1y + c2z + c3w for any c1 
= c2 
= c3 ∈ Z
∗
4 = Z \ {0}

is orthogonal to pairs Y Z, Y W, ZW , then it is also orthogonal with XY, XZ, XW
of fraction F . Indeed, orthogonality between S and Y Z is satisfied since
the sub-design taken from columns Y, Z, W has 64 runs and strength 3.
So for each fixed pair (y, z) appearing 4 times in F , four values of w
results in four values

s = f(y, z, w) (mod 4) ∈ {0, 1, 2, 3},
the first half (0 and 1) is replaced by 0, and the second (2 and 3) by 1
from Rule (4). Therefore there are precisely two runs (., y, z, ., 0) and two
runs (., y, z, ., 1) in the extended array [F |S]. The orthogonality between
S and pairs Y W, ZW is obtained similarly. Replacing z = −x−y−w + c
to f(y, z, w) gives

f(y, z, w) = −c2x + (c1 − c2)y + (c3 − c2)w + cc2.
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This expression tells us that if c2 
= c3 then S ⊥ XY , and if c1 
= c2 then
S ⊥ XW . Rewriting y = −x − z − w + c, then

f(y, z, w) = −c1x + (c2 − c1)z + (c3 − c1)w + cc1.

It shows that S ⊥ XZ if c1 
= c3. Therefore S is orthogonal to any
pair of columns of fraction F if nonzero coefficients c1, c2, c3 are pairwise
distinct. Remark that if the case like c1 = c2 occurs, then S is orthogonal
only to column X, W , not to Y, Z.

3. From the above proof, there are six functions fi defined by six coefficient
vectors si, (i = 1, . . .6) which are formed by taking all permutations
of 1,2,3. Each function determines a binary column. We make design
D = OA(64; 44·26; 3) by appending six binary columns Si consecutively to
fraction F . It is a right time to prove that the sub-design extracted from
six binary columns S1, . . . , S6 of D actually has strength 3 (or higher).
Let look at six factors S1, . . . , S6 built up from six vectors si or from
functions

f1(y, z, w) = y + 2z + 3w, f2(y, z, w) = y + 3z + 2w,

f3(y, z, w) = 2y + z + 3w, f4(y, z, w) = 2y + 3z + w,

f5(y, z, w) = 3y + z + 2w, f6(y, z, w) = 3y + 2z + w.

Summing them up and taking modulo 2 give us

f1 + f2 + f3 + f4 + f5 + f6 = 0 (mod 2). (5)

This equation is indeed the defining relation of a regular design 26−1 of
strength 5 with 32 runs. Hence our binary part OA(64; 26; 3) of D is
a replicate (twice) of this regular design 26−1, and so the binary part
OA(64; 26; 3) has strength 5. We can also show that, for instance, S3 ⊥
S1S2 by using equation f3 = f1 + f2 + 2w. �

4 Robbiano’s Method for solving Problem 2

We now discuss the idea of the border basis of an order ideal. As in Problem
2, suppose that E = {t1, . . . , tμ} ⊂ Est(D) is an order ideal, i.e. it is closed
under forming divisors. Define

E+ =
d⋃

i=1

xiE \ E = {xi t : t ∈ E, i = 1, . . . , n, and xit 
∈ E}.

This set is finite since E is finite and the number of indeterminates is finite.
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Proposition 1. [5, Proposition 4.3.2, p. 186]. Let I be a proper ideal in
P = F[x], let E = {t1, . . . , tμ} be an order ideal such that E = {t1, . . . , tμ} is
a basis of P/I as F-vector space, and let E+ = {b1, . . . , bv}. Denote by V(E)
the F-vector space of F[x] generated by E. Then there exists unique scalar
ajl ∈ F (l = 1, . . . , μ) with

gj = bj −
μ∑

l=1

ajltl ∈ I, for each j = 1, . . . , v. (6)

Moreover, the ideal I is generated by g1, . . . , gv. Hence bj =
∑μ

l=1 ajltl (mod I),
and so E+ ⊂ V(E) (mod I).

The following concepts are used in a proof of this proposition [see for ex-
ample, p 186, [5]].

Definition 2.

• A pair (g, t) is a marked polynomial if g is a non-zero polynomial and
the monomial t is in the support Supp(g) of g. We also say that g is
marked at t.

• Let G = [g1, . . . , gv] be a sequence of non-zero polynomials and let T =
[t1, . . . , tv] be a sequence of terms. If (g1, t1), . . ., (gv, tv) are marked
polynomials, we say G is marked by T .

• Denote by G = [g1, . . . , gv] a sequence of polynomials marked by the corre-
sponding elements of E+ in the order given by �. Then the pair (G, E+)
is called the border basis of I with respect to E.

Caboara and Robbiano ([3] and [5, Chapter 4]) used this concept of a border
basis G of an ideal E and related it to the matrices associated with the left
multiplication by xi, for i = 1, . . . , d. Then the ideal I generated by G is zero
dimensional (ie, the zero set Z(I) is finite or dimF(F[x]/I) < ∞) if, and only if,
the left multiplication matrices are pairwise commuting. Finally, Z(I) is the set
of runs of a fraction F such that Est(F ) = E. More concretely, the relationship
of border bases and commuting matrices is stated in [5, Theorem 4.3.17], and
an algorithm to obtain a fraction F solving Problem 2 is given in [5, Theorem
4.4.4].

5 Our linear algebra method for Problem 3

We now give a new technique for handling the third fundamental problem:
computing balanced fractional designs with given estimable terms. The idea
is to represent the strength of a balanced fractional design by linear algebraic
conditions.
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Suppose F ⊆ D is a fraction with d factors, considered as a finite subset of
Fd. In this section, we represent the factors Q1, . . . , Qd by variables x1, . . . , xd.
Let J = I(F ) and let V = P/J . Then E = Est(F ) = {h1, . . . , hμ} is a set of
monomials such that E = {h1, . . . , hd} is a basis for P/J as a F-vector space

Let M = xα = xα1
1 xα2

2 . . . xαd

d be a monomial. The left action of M induces
an endomorphism of V . Let LM be the matrix of this action with respect to
the basis E. The matrices Lx1 , . . . , Lxd are called the elementary multiplication
matrices.

5.1 Key result

The following result combines the Gröbner basis method with multiplication
matrices (for instance, see [5, Definition 4.1.1, page 172]) to make balanced
fractions with given estimable terms.

We see, by standard algebraic facts, if F exists and is finite, then P/I(F )
has finite dimension and the multiplication matrices commute pairwise. So
they generate a commutative subalgebra of the non-commutative ring of all
square matrices.

Our main result is the following.

Theorem 2. Suppose that F has no repeated runs. The characteristic polyno-
mial of LM is ∏

p=(p1,...,pd)∈F

(X − pα1
1 pα2

2 · · · pαd

d ).

Proof. Suppose the fraction F have N runs, and denote p = (p1, . . . , pd) for a
run in F . The vanishing ideal of p is

I(p) =
〈{x1 − p1, . . . , xd − pd}

〉
. (7)

The vanishing ideal of the fraction F is

I(F ) =
⋂

p∈F

I(p). (8)

The Chinese Remainder Theorem for ideals (see, for example, [8, Corollary
2.2]) gives us the decomposition:

P/I(F ) =
⊕
p∈F

P/I(p). (9)

Consider a run p = (p1, . . . , pd) as a variety. Each P/I(p) is isomorphic to
F[p] = F (see [17, Definition 19], e.g. for the definition of F[p]), so P/I(p) is
a 1-dimensional sub-algebra of the quotient algebra P/I(F ). Hence, P/I(F ) is
isomorphic to the algebra Fd.
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From Equation (7), since xi − pi ∈ I(p), so we have xαi

i = pαi

i in P/I(p),
for all i = 1, . . . , d. As a result, for each v ∈ P/I(p):

(xαi

i − pαi

i ) v = 0, so Lαi
xi

(v) = Lxi
αi (v) = xαi

i .v = pαi

i v, for i = 1, . . . , d,

that means v is an eigenvector of the matrix Lαi
xi

= (Lxi )αi with eigenvalue
pαi

i . Hence pi is an eigenvalue of the matrix Lxi (i = 1, 2, · · · , d). If we choose
a term M = xα1

1 xα2
2 . . . xαd

d , then the left multiplication matrix by M is given
by

LM = Lx1
α1 ...x

αd
d

= Lα1
x1

. . .Lαd
xd

, and LM (v) = pα1
1 pα2

2 · · ·pαd

d v.

Therefore, F consists of all vectors p = (p1, . . . , pd) where v is some common
eigenvector with eigenvalue pi with respect to the matrix Lxi . We conclude that
v is an eigenvector of LM with eigenvalue pα1

1 pα2
2 · · ·pαd

d . In other words, the N
subalgebras P/I(p) are N eigenspaces for LM , with corresponding eigenvalues
pα1
1 pα2

2 · · ·pαd

d for each run p = (p1, . . . , pd). As a result, since LM is an N ×N
matrix, the theorem is now proved. �

From the above theorem, the trace of LM is
∑

p∈F pα1
1 pα2

2 · · ·pαd

d . We use
this result to seek for balanced fractions F , using to the following observation.

• If F is a 1-balanced fraction, then the size of F must be a multiple of the
number of levels of each of the factors which form F .

• If F is a 2-balanced fraction, then the size of F must be a multiple of the
products of each pair of levels, and so on.

5.2 A necessary condition for the existence of balanced
fractions

Corollary 1. Let F be a t-balanced fraction of a design D in Fd. Assume that
factor xi has levels 0, 1, . . . , ri − 1.

(a) If t ≥ 1 and αi ∈ {0, 1, . . . , ri − 1}, then the left multiplication matrix
Lxi

αi has trace
N

ri

ri−1∑
l=0

lαi .

In particular, Lxi has trace |F |(ri − 1)/2.

(b) If t ≥ 2, αi ∈ {0, 1, . . . , ri − 1} and αj ∈ {0, 1, . . . , rj − 1}, then Lxi
αixj

αj

has trace
N

ri rj

ri−1∑
l=0

lαi

rj−1∑
m=0

mαj .
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Proof. For each factor i, the number λi = |F |/ri must be a positive integer.
The fraction F can be decomposed into λi blocks F1, . . . , Fλi, each block has
ri runs such that their ith coordinates are 0, 1, . . .ri − 1. Hence, Item (a) is
proved, due to the fact

∑
p∈Fl

pαi

i =
ri−1∑
m=0

mαi , for every l = 1, . . . , λi.

By considering the designs combined by each pair of two factors i, j as a
full design, applying a similar argument, we get (b). �

We have employed these results to find extra constraints for computing any
factorial fractions using L. Robbiano’s method, with intensively use of computer
algebra systems. Due to the prohibitively high computational complexity of
computing Gröbner bases, however, this method is useful in theory, but in
practice it only constructs designs having very moderate run sizes. See Chapter
2 of [9] for computational experiments.

6 Closing comments and future work

We have discussed mathematical and computational aspects of a few factorial
design construction problems. Specifically, in Section 5 we stated a necessary
condition for the existence of balanced fractional factorial designs provided the
design defining parameters. An arithmetic formulation, in addition resolves the
factor (column) enlarging problem of mixed balanced fractions with strength
at least 2, provided a fix number of experiments.

Moreover, a parallel computing approach can return lexicographically mini-
mum in column (LMC ) matrices, more details can be found in Schoen, Eende-
bak and Nguyen [18] and Phan, Soh and Nguyen [14, 15]. A combination of ILP
and group computation, in a future paper, could provide a way for completely
enumerating mixed OAs.
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