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Abstract

In this paper we will give a new proof of the Baer-Dedekind theorem
which classifies the groups in which each subgroup is normal, using the
fact that these are torsion nilpotent groups whose class is less than or
equal to 2.

1 Introduction

A subgroup H of a group G is called subnormal subgroup of G if there is an
ascending chain of normal subgroups

H = Gm � Gm−1 � · · ·� G1 � G0 = G (�)

of length m ≥ 0. Considering all these chains of subgroups there is at least one
of smaller length d and represented by H = Gd�Gd−1�· · ·�G1�G0 = G. The
length of this shortest series is called the subnormal index or defect of H in G.
Given a chain (�) between H and G, we say that H is subnormal of defect less
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than or equal to m. The normal subgroups are those with a defect ≤ 1. If a
group is nilpotent of class less than or equal to a certain c ∈ N, then each of its
subgroups is subnormal of defect ≤ c (e.g, p. 154 [9]). A natural question is
about the validity of the reciprocal of the preceding statement. The first step
in this direction was given by R. Dedekind (e.g, [5]) which determined all finite
groups in which each of its subgroups are normal. Later in 1933, R. Baer in
[3] extended this result to the arbitrary (infinite) groups. This fact is known
as Baer-Dedekind’s Theorem:

Main Theorem Let G be a group. All subgroups of G are normal if and
only if G is abelian or is a direct product of a quaternion group of order 8, an
elementary abelian 2-group and a torsion abelian group whose elements have
all odd order.

The purpose of this article is to present a constructive proof of the above
theorem, based mainly on the nilpotency and torsion properties of the groups
in question. The original proofs can be found for example in [11, 15, 19].

Some examples, concepts and results of the theory of groups found in this
article can be seen in [15, 17, 19]. In case of results on the theory of numbers
(e.g, [8]). For Dedekind groups (e.g, [3, 11, 19]).

Let P the set of prime numbers and G a group. Dr or × will be the
notation for the direct product of groups. If x ∈ G, denote by o(x) = |x| the
order of x. For all h, g ∈ G define the conjugated of h by g as hg = g−1hg,
the commutator of h and g as [h, g] = h−1g−1hg = h−1hg, more generally
if x1, x2, . . . , xn−1, xn ∈ G a simple commutator of weight n ≥ 2 is defined
recursively by rule [x1, x2, . . . , xn−1, xn] = [[x1, x2, . . . , xn−1], xn]. Let Φ(G) be
the Frattini subgroup of G (for more details see p. 122-124 in [17]).

A torsion group (or periodic group) is a group all of whose elements have
finite order. If the orders of the elements of a group are finite and limited,
the group will be called the finite exponent group. Let p ∈ P, we define a
p-group as being a group in which each element has power order of p. A finite
group is a p-group if and only if its order is a power of p. For an example of an
infinite abelian p-group, see Prüfer group Cp∞ (e.g, p. 24 [15]). An elementary
abelian p-group is an abelian group in which every nontrivial element has order
p. Every elementary abelian p-group is a vector space over the prime field with
p elements, and reciprocally (e.g, [6]). The torsion set tor(G) of an group G
is the subset of G consisting of all elements that have finite order. If G is a
nilpotent group then tor(G) is a fully-invariant subgroup such that G

tor(G)
is

torsion-free (5.2.7 in [15]).
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2 Preliminary.

Definition 2.1 A group is said Dedekindian if each of its subgroups is normal.
A non-abelian Dedekindian group will be called Hamiltonian.

Remark i) Every abelian group is clearly Dedekindian. ii) If every cyclic
subgroup of a group G is normal then G is Dedekindian. Indeed, let {1} �=
H � G. Put 1 �= x ∈ H and y ∈ G\H, as 〈x〉 � G have xy ∈ 〈x〉 � H.

ii) The generalized quarternion group Q2n , n ≥ 3, is a non-abelian fi-
nite 2-group having the following presentation Q2n = 〈x, y | x2n−1

= 1, y2 =
x2n−2

, xy = x−1〉. If n = 3 such a group has order 8 and is known as Hamil-
ton’s quaternions, the usual notation is Q8 = 〈i, j | i4 = j4 = 1, ij = i−1〉 =
{±1,±i,±j,±k}. If {1} �= L � Q8 we have [Q8, Q8] � L therefore L � Q8

which implies that Q8 is a Hamiltonian group. Q2n is not a Dedekindian
group if n > 3, since the subgroup 〈y〉 is not normal in Q2n .

Counter-example The Diedral group of order 8 : D8 = 〈r, s | r4 = s2 =
1, rs = r−1〉 is not Dedekindian, since the subgroup 〈s〉 is not normal, because
sr = r2s �∈ 〈s〉.

The result below is well known, however we will briefly demonstrate for the
convenience of the reader (see, e.g, p. 404 in [16]).

Lemma 2.2 Let G be a Dedekindian group. Then G is a nilpotent group whose
class is at most two.

Proof. Let x ∈ G, have 〈x〉 � G, thus NG(〈x〉) = G. By [15, 1.6.13] have
NG(〈x〉)
CG(〈x〉) ↪→ Aut(〈x〉). Note that Aut(〈x〉) is abelian (e.g, 1.5.5 [15]), thus

G′ � CG(〈x〉), ∀x ∈ G =⇒ G ′ �
⋂

x∈G

CG(〈x〉) =
⋂

x∈G

CG(x) = Z(G).

Therefore γ3(G) = {1} and so the result follows. �

Remark The class of the Dedekindian Groups is closed for the formation of
subgroups and quotients (the second follows from the Correspondence Theorem
(e. g, Lemma 2.7.5 in [10]). However Q8 × Q8 is not Dedekindian since the
diagonal subgroup D = {(g, g)|g ∈ Q8} is not normal.

An more general example of a Hamiltonian group is described below.

Lemma 2.3 Let G = Q8 × E × A a direct product of groups where E is ele-
mentary abelian 2-group, A an abelian torsion group such that all its elements
have odd order. Then G is a Hamiltonian group.

Proof. Clearly G is not an abelian group, because Q8 � G. It is sufficient to
prove that each cyclic subgroup of G is normal. Let g = xyz, g1 = x1y1z1 ∈ G,
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where x, x1 ∈ Q8 ; y, y1 ∈ E and z, z1 ∈ A. Have

gg1 = (xyz)x1y1z1 = xx1yy1zz1 = xx1yz.

If xx1 = x then gg1 = xyz = g ∈ 〈g〉, thus 〈g〉g1 = 〈gg1 〉 = 〈g〉 � G.
Now suppose that xx1 = x−1 then gg1 = x−1yz. Note that mdc(|z|, 4) = 1

because z ∈ A. Now by Chinese Remainder Theorem (e.g, Theorem 7.2 in
[8]) exist n ∈ N such that n ≡ 3(mod 4) and n ≡ 1(mod|z|), which implies
n = 4k + 3 = s · |z|+ 1 for certain k, s ∈ Z. As y ∈ E have |y| ≤ 2, thus

gg1 = x−1yz = x3yz = x4k+3y4k+3zs·|z|+1 = xnynzn = (xyz)n = gn ∈ 〈g〉.
Therefore for all g1 ∈ G have 〈g〉g1 = 〈gg1 〉 = 〈gn〉 � 〈g〉, thus 〈g〉 � G.

�

3 Reciprocal of Lemma 2.3.

Proposition 3.1 Let G a Hamiltonian group. Then G is a torsion group,
that is tor(G) = G.

Proof. Let x ∈ G such that |x| = ∞. If x �∈ Z(G), then exist y ∈ G with
xy �= yx. As 〈x〉� G and 〈y〉� G follow that [x, y] ∈ 〈x〉 ∩ 〈y〉, so 〈x〉 ∩ 〈y〉 �= 1,
that is, 〈x〉 ∩ 〈y〉 = 〈xn〉 for some n ∈ N. Thus

xn ∈ 〈y〉 =⇒ [xn, y] = 1 =⇒ (xn)y = xn.

On the other hand xy = x−1 and so y−1xny = (xn)y = x−n �= xn because
n �= 0. Therefore x ∈ Z(G). Now by hypothesis {1} �= Z(G) �= G, so put a ∈
G \Z(G), then a has finite order and xa ∈ G \Z(G). Define k = |xa| · |a|< ∞,
then xk = xkak = (xa)k = 1, a contradiction because x has infinite order,
therefore G is a torsion group. �
Proposition 3.2 Let p be an odd prime and P a Dedekindian p-group. Then
P is Abelian.

Proof. Suppose by contradiction that P is a Dedekindian p-group and not
Abelian. Then there are a, b ∈ P with ab �= ba. Consider the subgroup L =
〈a, b〉 = 〈a〉 · 〈b〉. Since |a| and |b| are powers of the prime p have that L is a
finite p-subgroup, Dedekindian and nonabelian of P. Therefore to prove such
a proposition it is enough to suppose that P is finite. Put P a finite p-group,
Dedekindian, nonabelian whose order is the smallest possible. By Burnside
Basis Theorem (see, e. g, Theorem 5.50 in [17]) have P

Φ(P) is an elementary
abelian p-group such that |P/Φ(P )| = p2, moreover P ′ � Φ(P ). Note that if
S is proper subgroup of P then S is abelian, moreover all quocient P/N with
1 �= N � P also is abelian. If N1, N2 � P such that |N1| = |N2| = p and
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N1 �= N2, have that P/N1 and P/N2 are abelian groups. Then by Theorem
2.23 in [17] P ′ � N1 ∩ N2 = {1} so P is abelian, a contradiction. Therefore
P has a unique subgroup N of order p such that N = P ′. Define ϕ : P −→ P
such that x �−→ xp. By Lemma 2.2 P is a nilpotent group whose class ≤ 2,

follows from Lemma 5.42 in [17] that (xy)p = [y, x]
p(p−1)

2 xpyp. As p is a odd
prime have p| p(p−1)

2 and since P ′ has order p, follow that [y, x]
p(p−1)

2 = 1. Thus
ϕ is a endomorphism of P since

ϕ(xy) = (xy)p = xpyp = ϕ(x) · ϕ(y).

Clearly Im(ϕ) � Φ(P ) because P
Φ(P) has exponent p. Since P

Ker(ϕ)
∼= Im(ϕ)

have |Ker(ϕ)| = |P |
|Im(ϕ)| � p2. Therefore there is more that a subgroup of order

p in Ker(ϕ) � P since it has exponent p, a contradiction by the first part of
the proof of this Proposition. �
Proposition 3.3 Let Q be a finite Dedekindian 2-group such that Q is non-
abelian minimal, that is, Q is not abelian and its own subgroups are abelian.
Then Q ∼= Q8.

Proof. Since subgroups of order p and p2 are abelian (e.g, 1.6.15 [15]) have
|Q| = 2n ≥ 8. Let x, y ∈ Q with xy �= yx. Consider the subgroup W = 〈x, y〉 =
〈x〉 · 〈y〉 of Q. As W is a non-abelian finite Dedekindian 2-group it follows from
the minimality of Q that Q = W, moreover | Q

Φ(Q) | = 4 and Q has exactly three
maximal subgroups, which are subgroups of index 2. By minimality of Q these
subgroups are abelian, in addition we have 1 � Q′ � Φ(Q). Let’s do the rest of
this proof in two cases namely.

Case 1. Suppose there is a non-abelian quotient Q
N = 〈x̄, ȳ〉 with |N | = 2,

where x̄ = x + N and ȳ = y + N are the classes of x and y modulo N.
In this case Q/N is a non-abelian minimal finite Dedekindian 2-group. The
family of groups satisfying the hypotheses of the theorem is not empty since
Q8 belongs to this collection. By induction, suppose that the proposition is
true for all groups whose order is less than that of Q. Then Q

N
∼= Q8 and since

|N | = 2 have |Q| = 16. As Q = 〈x〉 · 〈y〉 and 〈x〉, 〈y〉 � Q it can not occur
that L = 〈x〉 ∩ 〈y〉 �= {1} because otherwise Q would be the direct product
of 〈x〉 × 〈y〉 so Q would be an abelian group, contradicting the hypothesis.
Clearly 1 �= |x| �= 16 and 1 �= |y| �= 16 because otherwise Q would cyclyc
(abelian), contradicting the hypothesis. By Index Theorem (e.g, 1.3.11 [15])
|〈x〉 · 〈y〉| = |〈x〉|·|〈y〉|

|〈x〉∩〈y〉| = 16 which implies that |L| = 2 or 4 otherwise one of the
x or y should have order ≥ 16, which is impossible. In any case, in Q there
must be an element of order 8, without loss of generality suppose that x has
such order. Clearly N � 〈x〉 because otherwise Q = 〈x〉×N which implies that
Q would be Abelian, an absurd. Therefore as |N | = 2 have N = 〈x4〉. If |L| = 2
then |y| = 4, and since L � 〈x〉 follows that x4 = y2, where ȳ would have order
2, but this is impossible since the generators of Q

N
∼= Q8 have to have order 4. So



152 A new proof of Baer-Dedekind theorem

we have |x| = |y| = 8. Then x inverts y modulo N, that is x̄ȳ = x̄−1. Then in Q
we have xy = x−1 = x7 or xy = x−1x4 = x3. Since J = 〈x2〉〈y〉 < Q it follows
that J is abelian so (x2)y = x2. Therefore x2 = (x2)y = (xy)2 = x14 = x6 a
contradiction because the order of x is equal to 8. Thus, case 1 can not occur.

Caso 2. By the negative of case 1 together with the third isomorphism
theorem, consider from now on that all proper quotients of Q are abelian.
With an argument analogous to that used in Proposition 3.2 we have that Q′

is the only subgroup of order 2 in Q. By Theorem 5.46 in [17] we have that the
group Q must be cyclic or generalized quaternion, but since Q is Dedekind and
noncyclic we have Q ∼= Q8. �

Lemma 3.4 Let D be a non-abelian Dedekind 2-group. Then there exists a
subgroup B of D isomorphic to Q8, and in addition there is a maximal subgroup
E of D with the property that E ∩ B = {1}.
Proof. Since D is not abelian there are a, b in D such that ab �= ba. By
Index Theorem (e.g, 1.3.11 [15]) W = 〈a, b〉 = 〈a〉 · 〈b〉 � D is a Hamiltonian
finite 2-subgroup. If W is minimal non-abelian we have by Proposition 3.3 that
W = W0 = B ∼= Q8 and the Lemma will be proved. Otherwise, there exists
a non-abelian maximal subgroup W1 of W, whose index is 2 (e.g, Theorem
5.40 [17]). If W1 is minimal non-abelian we have by Proposition 3.3 that
W1 = B ∼= Q8 and the Lemma will be proved. This must be repeated if
necessary until we find a subgroup Wj of D(j ≥ 0) whose all of its maximal
subgroups have order 4 (these are all abelian), since in this case Wj will be non-
abelian minimal, and the proof will be completed by Proposition 3.3. Finally,
let L = {X � D |X ∩ B = {1}} . Clearly {1} ∈ L �= ∅. By the Lemma of
Zorn there exists a maximal subgroup E of D with the following property
E ∩ B = {1}. �

Lemma 3.5 Let D be a Dedekindian 2-group containing Q8 and consider H =
〈a〉 a subgroup of order 4 in D. Then H ∩Q8 �= {1} and furthermore a2 = −1.

Proof. Suppose that H∩Q8 = {1} . As D is Dedekind we have Q8·H = Q8×H.
Now note that 〈ia〉 = {1, ia,−a2,−ia3} and moreover (ia)j = −ia ∈ 〈ia〉 since
that 〈ia〉� D, a contradiction, therefore H ∩Q8 �= {1} thus |H ∩Q8| = 2 or 4.
If |H ∩ Q8| = 2 is trivial. On the other hand, if |H ∩ Q8| = 4 then H ∩ Q8 =
H = 〈±γ〉 for some γ = i, j or k, where it follows that a2 = (±γ)2 = −1. �

Corollary 3.6 Let D be a Dedekindian 2-group containing Q8 and consider E
a non-trivial subgroup of D such that E ∩ Q8 = {1} . Then E has exponent 2
(E is an elementary abelian 2-group).

Proof. Let a �= 1 ∈ E with |a| = 2k, where k ≥ 2. Clearly b = a2k−2 ∈ E and
|b| = 4. As E ∩ Q8 = {1} have 〈b〉 ∩ Q8 = {1} which contradicts Lemma 3.5,
thus |a| = 2. �
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Proposition 3.7 Let D be a Hamiltonian 2-group. Then D = Q8 × E, where
E is trivial or an elementary abelian 2-group.

Proof. By Lemma 3.4 we can consider that Q8 is a subgroup of D and in
addition there is a maximal subgroup E of D with the property E ∩Q8 = {1},
thus Q8 ·E = Q8 ×E � D. To prove the proposition it is enough to prove that
if a belongs to D then a also belongs to Q8 × E.

Let a ∈ D whose order is equal to 2. If a ∈ Q8 or a ∈ E it is trivial. If
E = {1} follows from its maximality that 〈a〉∩Q8 �= {1} thus a ∈ Q8×E. Now
suppose that E �= {1} and a ∈ D\(Q8 ∪E). Consider 〈a〉 ·E = 〈a〉×E. Clearly
〈a〉 × E �= D because that Q8 ≤ D, thus by maximality of E exist 1 �= b ∈ E
such that q = ab ∈ Q8. Therefore a = qb−1 ∈ Q8 × E.

Consider now a ∈ D\ (Q8 ∪ E) such that |a| = 4. Again if a ∈ Q8, it is
trivial. By Lemma 3.5 have a2 = −1 ∈ Q8, moreover as D is Dedekind have
that 〈a〉 � D so if s ∈ {i, j, k} have as = a or as = a3. Note that if ai = a3

and aj = a3 then ak = a9 = a. Testing all possibilities we noticed that one of
the following equations at least is true: ai = a or aj = a or ak = a. Assume
without loss of generality that ai = a then (ia)2 = i2a2 = 1 so |ia| = 2. Then
as we saw in the first part of this proof we have ia ∈ Q8 ×E and so a ∈ Q8×E
too.

Let’s now show that there is no element in group D whose order is greater
than or equal to 8. Let a ∈ D with |a| = 2k, where k > 3, clearly b = a2k−3

satisfies |b| = 8. It is enough to show that such b do not exist in D. Put
a ∈ D with |a| = 8 then 〈a2〉 =

{
id, a2, a4, a6

}
. By Lemma 3.5 we have

a4 = −1 ∈ Q8 and in addition for the second part of this proof we have
a2 = s.m ∈ Q8 × E. Clearly s �= ±1 because that |a2| = 4 a contradiction,
so s ∈ {±i,±j,±k} . Suppose without loss of generality that s = i. Thus
(a2)j = −im = −a2 = a6. As 〈a〉 � D and (a2)j = a6 we have aj �= a
and aj �= a5. Therefore the only possibilities for aj are aj = a3 or aj = a7.
Suppose first that aj = a3 then (ja)2 = jaja = j2a4 = 1, now if aj = a7 then
(ja)4 = jajajaja = j2a8jaja = j3aja = j4a8 = 1, thus |ja| = 2 or 4. Again
for the same reasons as above ja ∈ Q8 × E and so a ∈ Q8 × E. Then we prove
that D = Q8 × E, in particular if E is trivial then D = Q8. �

Let us now use the results seen in this section to prove the following propo-
sition. This is the reciprocal for the Baer-Dedekind Theorem.

Proposition 3.8 Let G be a Hamiltonian group, then G ∼= Q8 ×E ×A, where
A is an abelian torsion group whose elements have odd order and E is an
elementary abelian 2-group.

Proof. By Lemma 2.2 and Proposition 3.1 have that G is a nilpotent torsion
group whose class is at most two, so tor(G) = G. By 5.2.7 in [15] have

G = Dr
p∈P

Tp = D × Dr
p∈P\{2} Tp
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where Dr denotes the direct product of groups, Tp is the unique maximum
p-subgroup of G and P is the set of all prime positive integers such that
D = T2. Now as Tp is a Dedekind group for each odd prime number p, fol-
lows from Proposition 3.2 that each Tp ( odd p) is abelian which implies that
A = Dr

p∈P\{2} Tp is an abelian torsion group whose elements have odd order.
Clearly D is not abelian otherwise G would be an abelian group. Then D is a
Dedekindian non-abelian 2-group. By Proposition 3.7 have D ∼= Q8×E, where
E is an elementary abelian 2-group. Therefore G ∼= Q8 × E × A. �

We come to the main theorem whose original proof can be found in (for
infinite groups, e.g, [3, 11, 19]), (for finite groups, e.g, [5]) and (for generaliza-
tions, e.g, [1, 2, 12, 18, 7, 14, 4, 13]).

Proof of the Main Theorem: It follows from Lemma 2.3 and Proposition
3.8. �
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