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Abstract

The continuity of the quenching time is studied in this paper where we
have considered a heat equation with variable reaction which quenches
in a finite time. For this fact, we have estimated the quenching time and
have proved that it is continuous as a function of the nonlinear source.

1 Introduction

Consider the following initial-boundary value problem

ut = Δu− u−q in Ω × (0, T ), (1)

∂u

∂ν
= 0 on ∂Ω × (0, T ), (2)
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u(x, 0) = u0(x) > 0 in Ω, (3)

where q > 0, Ω is a bounded domain in R
N with smooth boundary ∂Ω, Δ is

the Laplacian, ν is the exterior normal unit vector on ∂Ω. The initial datum
u0 ∈ C2(Ω) and u0(x) > 0 in Ω and there exists a positive constant B such
that

Δu0(x) − (u0(x))−p ≤ −B(u0(x))−p in Ω. (4)

Here (0, T ) is the maximal time interval of existence of the solution u, and by
a solution, we mean the following.

Definition 1.1. A solution of (1)–(3) is a function u(x, t) continuous in Ω ×
[0, T ), u(x, t) > 0 in Ω × [0, T ), and twice continuously differentiable in x and
once in t in Ω × (0, T ).

The time T may be finite or infinite. When T is infinite, then we say that
the solution u exists globally. When T is finite, then the solution u develops a
quenching in a finite time, namely

lim
t→T

umin(t) = 0,

where umin(t) = minx∈Ω u(x, t). In this last case, we say that the solution u
quenches in a finite time and the time T is called the quenching time of the
solution u. Since the pioneering work of Kawarada in 1975 (see, [25]), the study
of the phenomenon of quenching for semilinear heat equations has attracted a
considerable attention (see, for example [2]-[4], [6]-[8], [11], [14], [22], [26], [28]-
[30], [37-40] and the references cited therein). A typical example is the work
in [7] where the problem (1)-(3) has been studied. Some authors have proved
the existence and uniqueness of solution (see, [7], [16], [27]). This paper is the
continuation of our work in [8] where we have considered the same problem.
We have estimated the quenching time and studied its continuity as a function
of the initial datum u0. This time, the continuity of the quenching time as a
function of the exponent of the nonlinear source is tackled. More precisely, we
consider the following initial-boundary value problem

vt = Δv − v−p(x) in Ω × (0, Th), (5)

∂v

∂ν
= 0 on ∂Ω × (0, Th), (6)

v(x, 0) = u0(x) > 0 in Ω, (7)

where p ∈ C0(Ω), infx∈Ω p(x) = q > 0, p(x) = q + h(x) in Ω, h(x) ≥ 0 in
Ω. Here (0, Th) is the maximal time interval on which the solution v of (5)-(7)
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exists. When Th is finite, we say that the solution v of (5)-(7) quenches in
a finite time and the time Th is called the quenching time of the solution v.
Consequently to the definition of the time Th we have in this paper

v(x, t) > 0 in Ω × (0, Th).

If we set g(x, u) = u−p(x), then we observe that the function g is continuous
in both variables and locally Lipschitz in the second one. Let us notice that,
because the initial data of the different problems considered are sufficiently
regular, the solutions of these problems exist and are regular. In addition, we
note that the regularity of solutions is as important as the regularity of the
initial data, and the maximum principle holds (see, [16], [27], [35]). In the
present paper, we prove that if h is small enough, then the solution v of (5)-(7)
quenches in a finite time and its quenching time Th goes to T as h goes to
zero where T is the quenching time of the solution u of (1)–(3). In addition
we provide an upper bound of |Th − T | in terms of ‖h‖∞. Similar results have
been obtained in [5], [9], [17]-[21], [23], [24], [31], [32] where the authors have
considered the phenomenon of blow-up (we say that a solution blows up in a
finite time if it reaches the value infinity in a finite time).
This paper is structured as follows. In the following section, we show that
under some assumptions, the solution v of (5)-(7) quenches in a finite time and
estimate its quenching time. In the third section, we deal with the continuity
of the quenching time and finally, in the last section, we give some numerical
results to illustrate our analysis.

2 Quenching time

In this section, using an idea of Friedman and McLeod in [17], we may prove
the following result on the quenching of the solution v of (5)-(7).

Theorem 2.1. Suppose that there exists a constant A ∈ (0, 1] such that the
initial datum at (7) satisfies

Δu0(x) − (u0(x))−p(x) ≤ −A(u0(x))−q in Ω. (8)

Then, the solution v of (5)-(7) quenches in a finite time Th which obeys the
following estimate

Th ≤ (u0min)q+1

A(q + 1)
.

Proof. We know that (0, Th) is the maximal time interval of existence of
the solution v. Therefore, to prove our theorem, we have to show that Th is
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finite and satisfies the above inequality. For this fact, we introduce J(x, t) a
function defined as follows

J(x, t) = vt(x, t) +A(v(x, t))−q in Ω × [0, Th).

A simple calculation yields

Jt − ΔJ = (vt − Δv)t − Aqv−q−1vt − AΔv−q in Ω × (0, Th). (9)

It is not hard to see that Δv−q = q(q+1)v−q−2|∇v|2−qv−q−1Δv in Ω×(0, Th),
which implies that Δv−q ≥ −qv−q−1Δv in Ω×(0, Th). Applying this inequality
in (9), we find that

Jt − ΔJ ≤ (vt − Δv)t −Aqv−q−1(vt − Δv) in Ω × (0, Th). (10)

Use (5) and (10) to obtain

Jt − ΔJ ≤ p(x)v−p(x)−1vt +Aqv−q−p(x)−1 in Ω × (0, Th).

Due to the fact that q ≤ p(x) in Ω, we discover that

Jt − ΔJ ≤ p(x)v−p(x)−1(vt +Av−q) in Ω × (0, Th).

Making use of the expression of J, we derive the following inequality

Jt − ΔJ ≤ p(x)v−p(x)−1J in Ω × (0, Th).

The boundary condition (5) allow us to write

∂J

∂ν
=

(
∂v

∂ν

)
t

− Aqv−q−1 ∂v

∂ν
= 0 on ∂Ω × (0, Th).

According to (8), we have

J(x, 0) = Δu0(x) − (u0(x))−p(x) + A(u0(x))−q ≤ 0 in Ω.

One concludes by the maximum principle that J(x, t) ≤ 0 in Ω × (0, Th), that
is

vt(x, t) +A(v(x, t))−q ≤ 0 in Ω × (0, Th). (11)

This estimate may be rewritten as follows

vqdv ≤ −Adt in Ω × (0, Th). (12)

Integrate the above inequality over (0, Th) to obtain

Th ≤ (v(x, 0))q+1 − (v(x, Th))q+1

A(q + 1)
for x ∈ Ω.
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Employing (11), we observe that v is nonincreasing with respect to the second
variable, which implies that 0 < v(x, Th) ≤ v(x, 0) in Ω. We deduce that

Th ≤ (v(x, 0))q+1

A(q + 1)
for x ∈ Ω,

which implies that

Th ≤ (u0min)q+1

A(q + 1)
.

We observe that the quantity on the right hand side of the above inequality is
finite. Consequently, v quenches at the time Th and the proof is finished. �
Remark 2.1. Let t0 ∈ (0, Th). Integrating the inequality (12) from t0 to Th,
we get

Th − t0 ≤ (v(x, t0))q+1

A(q + 1)
for x ∈ Ω.

We deduce that

Th − t0 ≤ (vmin(t0))q+1

A(q + 1)
.

Remark 2.2. In view of the condition (4) and reasoning as in the proof of
Theorem 2.1, it is not hard to see that there exists a positive constant C such
that umin(t) ≥ C(T − t)

1
q+1 for t ∈ (0, T ).

Before dealing with the continuity, we also need to show an upper bound
of umin(t) for t ∈ (0, T ). For this end, we state the theorem below.

Theorem 2.2. Let u be the solution of (1)–(3). Then, there exists a positive
constant B such that the following estimate holds

umin(t) ≤ D(T − t)
1

1+p+ for t ∈ (0, T ), (13)

where p+ = maxx∈Ω p(x).

Proof. Since we want to provide an upper bound of umin(t) for t ∈ (0, T ),
we begin our proof by setting

w(t) =
umin(t)
‖u0‖∞ for t ∈ [0, T ).

Let t1, t2 ∈ [0, T ). Then there exist x1, x2 ∈ Ω such that w(t1) = u(x1,t1)
‖u0‖∞ and

w(t2) = u(x2,t2)
‖u0‖∞

. Use Taylor’s expansion to establish

w(t2) −w(t1) ≥ u(x2, t2) − u(x2, t1)
‖u0‖∞ = (t2 − t1)

ut(x2, t2)
‖u0‖∞ + o(t2 − t1),
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w(t2) −w(t1) ≤ u(x1, t2) − u(x1, t1)
‖u0‖∞ = (t2 − t1)

ut(x1, t1)
‖u0‖∞ + o(t2 − t1),

which implies that w(t) is Lipschitz continuous. Moreover, if t2 > t1, then

w(t2) −w(t1)
t2 − t1

≥ ut(x2, t2)
‖u0‖∞ + o(1)

=
Δu(x2, t2)
‖u0‖∞ − ‖u0‖−p(x2)−1

∞

(
u(x2, t2)
‖u0‖∞

)−p(x2)

+ o(1).

Exploiting the maximum principle, we know that u(x, t) ≤ ‖u0‖∞ in Ω×(0, T ).

This implies that −
(
u(x2,t2)
‖u0‖∞

)−p(x2) ≥ −
(
u(x2,t2)
‖u0‖∞

)−p+
. It follows that

w(t2) − w(t1)
t2 − t1

≥ Δu(x2, t2)
‖u0‖∞ − β

(
u(x2, t2)
‖u0‖∞

)−p+
+ o(1),

where β = max{‖u0‖−q−1
∞ , ‖u0‖−p+−1

∞ }. Letting t2 → t1, and using the fact
that Δu(x2, t2) ≥ 0, we obtain w′(t) ≥ −β(w(t))−p+ for a.e. t ∈ (0, T ). This
inequality can be rewritten as follows wp+dw ≥ −βdt for a.e. t ∈ (0, T ).
Integrate the above inequality over (t, T ) to obtain β(T − t) ≥ (w(t))1+p+

1+p+
for

t ∈ (0, T ). Since w(t) = umin(t)
‖u0‖∞ , we arrive at

umin(t) ≤ ‖u0‖∞ (β(1 + p+)(T − t))
1

1+p+ for t ∈ (0, T ).

This estimate ends the proof when we set ‖u0‖∞ (β(1 + p+))
1

1+p+ = D. �

3 Continuity of the quenching time

In this section, we shall present our main result which consists in proving an
upper bound of |Th − T | in terms of ‖h‖∞ by the following theorem.

Theorem 3.1. Suppose that the problem (1)–(3) has a solution u which quenches
at the time T. Then, under the assumption of Theorem 2.1, the solution v of
(5)–(7) quenches in a finite time Th, and there exist positive constants α, b, μ
and γ such that for h small enough, the following estimate holds

|Th − T | ≤ α

(
ln(μ +

b

‖h‖∞ )
)−γ

.

Proof. According to Theorem 2.1, the solution v quenches in a finite
time Th. In order to prove the above estimate, we proceed as follows. Let
T ∗ = min{T, Th} and introduce the error function e(x, t) defined as follows

e(x, t) = v(x, t) − u(x, t) in Ω × [0, T ∗).
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Let t0 ∈ (0, T ∗). It is easy to establish by the mean value theorem that

et − Δe = p(x)θ−p(x)−1e− ln(v)v−s(x)h in Ω × (0, t0), (14)

∂e

∂ν
= 0 on ∂Ω × (0, t0), (15)

e(x, 0) = 0 in Ω, (16)

where θ lies between u and v, and s(x) between q and p(x). Using the fact that
ln(σ) ≤ σ for σ > 0, the equality (14) can be rewritten as follows

et − Δe ≤ p(x)θ−p(x)−1e+ v−s(x)−1h in Ω × (0, t0).

A transformation gives

et − Δe ≤ p(x)‖u0‖−p(x)−1
∞

(
θ

‖u0‖∞

)−p(x)−1

e

+ ‖u0‖−s(x)−1
∞

(
v

‖u0‖∞

)−s(x)−1

h in Ω × (0, t0).

According to the maximum principle, it is easy to see that v
‖u0‖∞ ≤ 1 and

θ
‖u0‖∞ ≤ 1 in Ω×(0, t0). Due to the fact that the function x → A−x (A ∈ (0, 1))
is nondecreasing for x ∈ (0,∞), the following estimate holds

et − Δe ≤ p+C0

(
θ

‖u0‖∞

)−p+−1

|e| + C0

(
v

‖u0‖∞

)−p+−1

h in Ω × (0, t0), (17)

where C0 = max{‖u0‖−q−1
∞ , ‖u0‖−p+−1

∞ }. Using Remarks 2.1 and 2.2, there
exist positive constants C and C1 such that for t ∈ (0, t0),

umin(t) ≥ C(T − t)
1

q+1 and vmin(t) ≥ C1(Th − t)
1

q+1 .

There exists a positive constant C2 such that min{C(T − t)
1

q+1 , C1(Th −
t)

1
q+1 } = C2(T − t)

1
q+1 . Then, we have θ(x, t) ≥ C2(T − t)

1
q+1 in Ω × (0, t0).

Applying these estimates in (17), we have

et ≤ Δe+
C3

(T − t)
1+p+
q+1

|e|+ C4h

(T − t)
1+p+
q+1

in Ω × (0, t0),

where C3 = p+C0

(
C2

‖u0‖∞

)−p+−1

and C4 = C0

(
C2

‖u0‖∞

)−p+−1

. Consider the
following ODE

Z′(t) =
C3Z(t)
(T − t)δ

+
C4h

(T − t)δ
for t ∈ (0, t0), Z(0) = 0,
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where δ = 1+p+
q+1

. Its solution Z(t) is given explicitly by

Z(t) =
C4

C3
C5he

C3
δ−1 (T−t)1−δ − C4

C3
h for t ∈ [0, t0),

where C5 = e
−C3
δ−1 T

1−δ

. An application of the maximum principle gives

e(x, t) ≤ Z(t) =
C4

C3
h

(
C5e

C3
δ−1 (T−t)1−δ − 1

)
in Ω × [0, t0).

Fix a a positive constant and let t1 ∈ (0, T ∗) be a time such that ‖e(·, t1)‖∞ ≤
C4
C3

‖h‖∞
(
C5e

C3
δ−1(T−t1)1−δ − 1

)
= a for h small enough. This implies that

T − t1 =
(
δ − 1
C3

ln(
1
C5

+
C3a

C4C5‖h‖∞ )
) 1

1−δ

. (18)

On the other hand, by Remark 2.1 and the triangle inequality, we have

|Th − t1| ≤ (vmin(t1))q+1

A(q + 1)
≤ (umin(t1) + ‖e(·, t1)‖∞)q+1

A(q + 1)
.

Using Theorem 2.2 and the fact that ‖e(·, t1)‖∞ ≤ a, we obtain

|Th − t1| ≤
(
D(T − t1)

1
1+p+ + a

)q+1

A(q + 1)
. (19)

We can find a positive constant C6 such that

D(T − t1)
1

1+p+ + a = C6(T − t1)
1

1+p+ .

Applying the above equality in (18) we obtain that

|Th − t1| ≤ C7|T − t1|
q+1

1+p+ ,

where C7 = Cq+1
6

A(q+1) . We deduce from the above estimate and the triangle in-
equality that

|T − Th| ≤ |T − t1| + |Th − t1| ≤ |T − t1| +C7|T − t1|
q+1

1+p+ .

This implies that there exists a positive constant C8 such that

|T − Th| ≤ C8|T − t1|
q+1

1+p+ .

Since h is small enough, we have ln( 1
C5

+ C3a
C4C5‖h‖∞ ) ≥ 0. Using the equality

(18) and the fact that 1 − δ ≤ 0, we see that, there exist positive constants α,
b, μ and γ such that

|T − Th| ≤ α

(
ln(μ +

b

‖h‖∞ )
)−γ

.

This ends the proof. �



Halima Nachid and Yoro Gozo 9

4 Numerical results

To compute the numerical results we need to consider the radial symmetric
solution of the following initial-boundary value problem

ut = Δu− u−p(x) in B × (0, T ),

∂u

∂ν
= 0 on S × (0, T ),

u(x, 0) = u0(x) in B,

where p(x) = ψ(|x|), u0(x) = ϕ(|x|), B = {x ∈ R
N ; ‖x‖ < 1}, S = {x ∈

R
N ; ‖x‖ = 1}. Another form of the above problem is

ut = urr +
N − 1
r

ur − u−ψ(r), r ∈ (0, 1), t ∈ (0, T ), (20)

ur(0, t) = 0, ur(1, t) = 0, t ∈ (0, T ), (21)

u(r, 0) = ϕ(r), r ∈ [0, 1], (22)

where, we take ψ(r) = 1 + εr
r+1 with ε ∈ [0, 1] and ϕ(r) = 4 + 3 cos(πr). In

order to compute the numerical solution, we need to construct an adaptive
scheme. For this fact, define the grid xi = ih, 0 ≤ i ≤ I where I is a positive
integer and h = 1/I. Approximate the solution u of (20)-(22) by the solution
U

(n)
h = (U (n)

0 , ..., U
(n)
I )T of the following explicit scheme

U
(n+1)
0 − U

(n)
0

Δtn
= N

2U (n)
1 − 2U (n)

0

h2
− (U (n)

0 )−ψ0 ,

U
(n+1)
i − U

(n)
i

Δtn
=
U

(n)
i+1 − 2U (n)

i + U
(n)
i−1

h2
+

(N − 1)
ih

U
(n)
i+1 − U

(n)
i−1

2h

−(U (n)
i )−ψi , 1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

Δtn
= N

2U (n)
I−1 − 2U (n)

I

h2
− (U (n)

I )−ψI ,

U
(0)
i = ϕi, 0 ≤ i ≤ I,
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where ψi = 1 + εih
ih+1

and ϕi = 4 + 3 cos(πih). For the time step we take

Δtn = min{ (1 − h2)h2

2N
, h2(U (n)

hmin)p++1}

with U
(n)
hmin = min0≤i≤I U

(n)
i . This condition permits to the discrete solution

to reproduce the properties of the continuous one when the time t approaches
the quenching time T, and ensures the positivity of the discrete solution. An
important fact concerning the phenomenon of quenching is that, if the solution
u quenches at the time T, then, when the time t approaches the quenching time
T, the solution u decreases to zero rapidly. We also approximate the solution
u of (20)-(22) by the solution U (n)

h of the implicit scheme below

U
(n+1)
0 − U

(n)
0

Δtn
= N

2U (n+1)
1 − 2U (n+1)

0

h2
− (U (n)

0 )−ψ0−1U
(n+1)
0

U
(n+1)
i − U

(n)
i

Δtn
=
U

(n+1)
i+1 − 2U (n+1)

i + U
(n+1)
i−1

h2
+

(N − 1)
ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h

−(U (n)
i )−ψi−1U

(n+1)
i , 1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

Δtn
= N

2U (n+1)
I−1 − 2U (n+1)

I

h2
− (U (n)

I )−ψI−1U
(n+1)
I ,

U
(0)
i = ϕi, 0 ≤ i ≤ I.

As in the case of the explicit scheme, here again, we have transformed our
scheme to an adaptive one by choosing Δtn = h2(U (n)

hmin)1+p+ .
Let us again remark that for the above implicit scheme, the existence and
positivity of the discrete solution is also guaranteed using standard methods
(see for instance [6]). It is not hard to see that uxx(1, t) = limr→1

ur(r,t)
r and

uxx(0, t) = limr→0
ur(r,t)
r . Hence, if r = 0 and r = 1, we see that

ut(0, t) = Nurr(0, t)− u−p(0, t), t ∈ (0, T ),

ut(1, t) = Nurr(1, t)− u−p(1, t), t ∈ (0, T ).

These observations have been taken into account in the construction of our
schemes when i = 0 and i = I. We need the following definition.
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Definition 4.1. We say that the discrete solution U
(n)
h of the explicit scheme

or the implicit scheme quenches in a finite time if limn→∞U
(n)
hmin = 0 and the

series
∑∞

n=0 Δtn converges. The quantity
∑∞

n=0 Δtn is called the numerical
quenching time of the discrete solution U

(n)
h .

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, the CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128. We take for the numerical quenching
time Tn =

∑n−1
j=0 Δtj which is computed at the first time when

Δtn = |Tn+1 − Tn| ≤ 10−16.

The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for ψi = 1 + εih
1+ih , N = 2

First case: ε = 0

Table 1: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I tn n CPU time s
16 3.604286 5415 12 -
32 3.731558 21476 71 -
64 3.796654 84141 523 0.97
128 3.828011 335561 3782 1.04

Table 2: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method

I tn n CPU time s
16 3.604107 5325 13 -
32 3.731511 21121 87 -
64 3.796641 84721 1106 0.97
128 3.830302 331834 7718 0.95

Second case: ε = 1/50
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Table 3: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I tn n CPU time s
16 3.617938 5921 3 -
32 3.746080 23518 15 -
64 3.811621 92338 152 0.97
128 3.844694 360217 3684 0.99

Table 4: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method

I tn n CPU time s
16 3.617757 5921 5 -
32 3.746033 23518 26 -
64 3.811608 92338 310 0.97
128 3.844691 360217 8513 0.99

Third case: ε = 1/1000

Table 5: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I tn n CPU time s
16 3.604966 5914 2 -
32 3.732282 23480 15 -
64 3.797401 92161 152 0.97
128 3.830262 359454 6284 0.99

Table 6: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the first implicit
Euler method

I tn n CPU time s
16 3.604787 5914 4 -
32 3.732235 23480 25 -
64 3.797389 92161 307 0.97
128 3.830260 359454 7247 0.99
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Remark 4.1. If we consider the problem (20)-(22) in the case where the expo-
nent of the nonlinear source ψ(r) = 1 + εr

1+r with ε = 0, and the initial datum
ϕ(r) = 4 + 3 cos(πr), we see that the numerical quenching time of the discrete
solution for the explicit scheme or the implicit scheme is slightly equal to that
in which the exponent of the nonlinear source increases slightly, that is when ε
is a small positive real (see, Tables 1-6 for an illustration). This result confirms
the theory established in the previous section.

Figure 1: Evolution of the discrete

solution,f(U
(n)
k ) = (U

(n)
k )−p, I = 16,

ε = 1/1000 (explicit scheme).

Figure 2: Evolution of the discrete

solution,f(U
(n)
k ) = (U

(n)
k )−p, I = 16,

ε = 1/1000 (implicit scheme).

Figure 3: Evolution of the discrete

solution,f(U
(n)
k ) = (U

(n)
k )−p, I = 32,

ε = 1/1000 (explicit scheme).

Figure 4: Evolution of the discrete

solution,f(U
(n)
k ) = (U

(n)
k )−p, I = 32,

ε = 1/1000 (implicit scheme).
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Figure 5: Evolution of the discrete

solution,f(U
(n)
k ) = (U

(n)
k )−p, I = 16,

ε = 1/50 (explicit scheme).

Figure 6: Evolution of the discrete

solution,f(U
(n)
k ) = (U

(n)
k )−p, I = 16,

ε = 1/50 (implicit scheme).

Figure 7: Evolution of the discrete

solution,f(U
(n)
k ) = (U

(n)
k )−p, I = 32,

ε = 1/50 (explicit scheme).

Figure 8: Evolution of the discrete

solution,f(U
(n)
k ) = (U

(n)
k )−p, I = 32,

ε = 1/50 (implicit scheme).
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