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Abstract

In this paper, we introduce a new adaptive method for computing
the numerical solutions of a class of quenching parabolic equations which
exhibit a solution with one singularity. The continuity of the quenching
time is studied in this paper where we have considered a parabolic equa-
tion with variable reaction which quenches in a finite time. For this fact,
we have estimated the quenching time and have proved that it is con-
tinuous as a function of the nonlinear source for the following boundary
value problem

we (2, 1) — Uae (z,8) = =b(x)uP(x,t), 0<xz<1,¢t>0,

uz(0,8) =0, wug(1,¢)=0, ¢>0,
u(z,0) =uo(z) >0, 0<z<1,
where p > 0, uo € C*([0,1]), uo(0) = 0 and u(,)(l) = 0. The potential
b(z) € C*((0,1)), positive in [0, 1]. We find some conditions under which
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the solution of a semidiscrete form of the above problem quenches in a
finite time and estimate its semidiscrete quenching time. We also prove
that the semidiscrete quenching time converges to the real one when the
mesh size goes to zero. A similar study has been also investigated taking
a discrete form of the above problem. Finally, we give some numerical
experiments to illustrate our analysis.

1 Introduction

Consider the following boundary value problem

ut(x,t) — uge(z,t) = =b(z)uP(x,t), 0<z <1, ¢>0, (1)
ug(0,1) =0, wug(l,t) =0, t>0, (2)
u(z,0) =wup(x) >0, 0<z <1, (3)

where p > 0, ug € C*([0,1]), u(0) = 0 and uy(1) = 0. The potential b(x) €
C'((0,1)), positive in [0, 1] and by = max,e(o,1) b(z).

Definition 1.1. We say that the classical solution u of (1)-(3) quenches in a
finite time if there exists a finite time Ty such that umin(t) > 0 for t € [0,T,)
but

1imt_,Tq Umin (t) = O,

where Umin (t) = ming<z<1 u(x,t). The time Ty is called the quenching time of
the solution wu.

The theoretical study of solutions for semilinear parabolic equations which
quench in a finite time has been the subject of investigations of many authors
(see [2], [4]-[7], [11], [12], [16] and the references cited therein). Local in time
existence of a classical solution has been proved and this solution is unique. In
addition, it is shown that if the initial data at (3) satisfies ug () —b(x)ug P () <
—Auy?(x) in [0,1] where A € (0,1], then the classical solution u of (1)-(3)
quenches in a finite time 7" and we have the following estimates

p+1 p+1

ming<y <1 (uo(2))P" _ T < ming<,<1(uo(z))
p+1 - = Alp+1) ’

(A(p+ 1)1 (T — )77 < upin(t) < (Bp+1))71 (T —)7T  for ¢t € (0,T),

(see, for instance [4]-[6]).
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In this paper, we are interested in the numerical study of the phenomenon of
quenching. Under some assumptions, we show that the solution of a semidis-
crete form of (1)—(3) quenches in a finite time and estimate its semidiscrete
quenching time. We also prove that the semidiscrete quenching time goes to
the real one when the mesh size goes to zero. Similar results have been also
given for a discrete form of (1)—(3). Our work was motived by the papers in
[1], [3] and [15]. In [1] and [15], the authors have used semidiscrete and discrete
forms for some parabolic equations to study the phenomenon of blow-up (we
say that a solution blows up in a finite time if it reaches the value infinity in a
finite time). In [3], some schemes have been used to study the phenomenon of
extinction (we say that a solution extincts in a finite time if it becomes zero af-
ter a finite time for equations without singularities). One may also consult the
papers in [8]-[10], where the authors have studied theoretically the dependence
with respect to the initial data of the blow-up time of nonlinear parabolic prob-
lems. Concerning the numerical study, one may find some results in [13], [14],
[18], [19] where the authors have proposed some numerical schemes for com-
puting the numerical solutions for parabolic problems which present a solution
with one singularity.

This paper is organized as follows. In the next section, we give some results
about the discrete maximum principle. In the third section, under some con-
ditions, we prove that the solution of a semidiscrete form of (1)—(3) quenches
in a finite time and estimate its semidiscrete quenching time. In the fourth
section, we prove the convergence of the semidiscrete quenching time. In the
fifth section, we study the results of sections 3 and 4 taking a discrete form of
(1)—(3). Finally, in the last section, we give some numerical results to illustrate
our analysis.

2 Properties of a semidiscrete problem

In this section, we give some results about the discrete maximum principle.
We start by the construction of a semidiscrete scheme as follows. Let I be
a positive integer and let h = % Define the grid z; = ih, 0 < i < [ and
approximate the solution u of the problem (1)-(3) by the solution U (t) =

(Uo(t), Us(t),...,Ur(t))T of the following semidiscrete equations

dUd;;ﬂ — 52U¢(t) =-bU P(t), 0<i<I, te (O,th), (4)
U1(0)2<p1>0, OS’LSI, (5)
where
§°U;(t) = Uin() 2200 + Vi) -y _; oy _ L,

h? ’



70 An Adaptive Method On The Quenching Time Of A...

52U (t) = w Uy (1) = 2U1_1(t312— 20 (1)

Here (0, th) is the maximal time interval on which ||Up, (¢)||inf > 0 where

1030 ot = i, U0,
When the time 7" is finite, we say that the solution Uy (t) of (4)—(5) quenches

in a finite time and the time T;L is called the quenching time of the solution
Uy, (t).
The following lemma is a semidiscrete form of the maximum principle.

Lemme 2.1. Let ap(t) € C°([0,T),R*) and let Vi, € CL([0,T),RI+1) be
such that
dVi(t)
dt

—82Vi() F () Vi(t) >0, 0<i<I, te(0,7T), (6)

Vi(0) >0, 0<i<I (7)
Then Vi(t) >0,0<i<1I,te (0,T).
Proof. Let Ty be any quantity satisfying the inequality Ty < T and define
the vector Z,(t) = eMV},(t) where ) is such that
a;(t)—A>0 for 0<i<I, t€]0,Tp.

Set m = ming<¢<t, || Zn(t)|linf. Since Z(t) is a continuous vector on the com-
pact [0, Tp], there exist ig € {0,...,I} and to € [0, Tp] such that m = Z;, (to).
We observe that

dZ;, (to) Ziy(to) — Ziy(to — k)

p— 1 <
dt fimy <0, (8)
0% Z;y (to) > 0. ©
From (6), we obtain the following inequality
dZ;, (t
% = 82 Ziy (to) + (aiy (o) = A) Zi, (to) > 0. (10)

We deduce from (8)—(10) that (o, (to) — A)Zi,(to) > 0, which implies that
Z;,(to) > 0. Therefore, V3 (t) > 0 for t € [0, Tp] and the proof is complete. [

Another form of the maximum principle for semidiscrete equations is the
following comparison lemma.
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Lemme 2.2. Let

fEC'R xR, R).If

Vh; Wh € Cl (Oa T)a RI+1)

are such that

dvi(t)
dt

dW;(t)

FTa 52W¢(t) + f(W5(t),¢t),

— 0?Vi(t) + f(Vi(t), 1) <
0<i<I, te(0,7T),

Vi(0) < W;(0), 0<i<I,
then Vi(t) < Wi(t), 0<i<I, te(0,T).

Proof. Let Z,(t) = Wj(t) — Vi(t) and let to be the first ¢ € (0,T) such
that Zp(t) > 0 for t € [0,t0) but Z;,(to) = 0 for a certain iy € {0,...,I}. We

see that
dZiy(to) _ lim Ziy(to) — Ziy (to — k) <0,
dt k—0 k

627Z;,(to) > 0.

Therefore, we have

dZi;t(tO) _ 52Z¢0 (t()) + f(Wig (to), to) — f(Vi0 (tO), tO) <0,

which contradicts the first strict inequality of the lemma and this ends the
proof. ([

3 Quenching in the semidiscrete problem

In this section, under some assumptions, we show that the solution U}, of (4)-
(5) quenches in a finite time and estimate its semidiscrete quenching time. We
need the following result about the operator 6.

Lemme 3.1. Let U, € RIH be such that Uy > 0. Then, we have

S2(UP); > —pU; P716%U;, 0<i<I.
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Proof. Applying Taylor’s expansion, we find that

2p(p+1) g2
2h2  °

0<i<lI,

52(U_p)1' = —pUi_p_lisQUi + (Ui—i-l — Ul)

2p(p + 1) —p—2

AU = U) =55 m "

where 6; is an intermediate value between U; and U,;1, 1; the one between
Ui—y and U;, U_1 = Uy, Ury1 = Ur—1, no = 6o, nr = 0;. Use the fact that
Up, > 0 to complete the rest of the proof. O

The statement of the result about solutions which quench in a finite time
is the following.

Theorem 3.1. Let Uy, be the solution of (4)-(5) and assume that there exists
a positive constant A such that b; > A with A € (0, 1] and the initial data at
(5) satisfies

2o —bip; P < —Ap; P, 0<i<I. (11)

Then, the solution Uy quenches in a finite time th and we have the following
estimate

1
o < lenli
T Ap+1)

Proof. Since (0, th) is the maximal time interval on which ||Uy, (t)||ins > 0,
our aim is to show that T;L is finite and satisfies the above inequality. Introduce
the vector Jy(t) defined as follows

_ dUi(t)

Ji(t) n

+AUP(t), 0<i<I.

A straightforward calculation gives

dJ; d
L6 = —
dt dt

au;
dt

(= = 82U;) — ApU;”‘l% —AS2(UP);, 0<i<I.

From Lemma 3.1, we have §2(U~P); > —pUi_p_152U¢, which implies that

Al gy d UL

( U,
dt

—52U¢)—ApUi_p_1(dt —0%U;), 0<i<I.

dt Pt
Using (4), we arrive at

dJ;
dt

— 8T <pbU; P70, 0<i<I, te(0,Th).
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From (11), we observe that J,(0) < 0. We deduce from Lemma 2.1 that
Jn(t) <0 for t € (0,T}), which implies that

dU;(t)
dt

< —AUTP(t), 0<i<I, te(0,T). (12)

These estimates may be rewritten in the following form Uf dU; < —Adt, 0 <
1 < I. Integrating the above inequalities over the interval (¢, th), we get

SN (°/1()) s

—_— <1< 1.
" S AP+ 0<i<I (13)

Using the fact that |op||ine = Ui, (0) for a certain ig € {0, ..., I} and taking
t =0 in (13), we obtain the desired result. O

Remark 3.1. The inequalities (13) imply that

LAGIHS '
Th _ < in T
q to < A(p—|— 1) for toe€ (O, q ),

and

1Un(®)[lint > (Alp + 1) 7T (Th = )75 for t € (0,T).

Remark 3.2. Let Uy be the solution of (4)-(5). Then, we have

1
oh > lenlhs
¢ T Bp+1)

and
1UL(t)lins < (B(p+1))7T (T} — )77 for te(0,T)).

To prove these estimates, we proceed as follows. Introduce the function v(t)
defined as follows v(t) = ||[Un(t)|lins for t € [0,T1). Let t1,ty € [0,T)). Then,
there exist i1,i2 € {0, ..., I} such that v(t1) = U;, (t1) and v(tz) = U, (t2). We
observe that

olta) ~o(ta) 2 Us(t2) = Uss (1) = (12— 0) 202 ot — 1),
olta) —o(ta) < U (12) = Us (1) = (12— 0) 2 ot — 1),

which implies that v(t) is Lipschitz continuous. Further, if to > t1, then

v(t2) —o(t1)  dUi,(t2)
to —t1 - dt

+0o(1) = 62Uy, (t2) — 0, U, P (t2) + o(1).
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Obviously, §2U;,(t2) > 0. Letting t; — t2, we obtain dz—g) > —BvP(t) for a.e.

t e (0, th) or equivalently vPdv > —Bdt for a.e. t € (0, th). Integrate the above
+1
inequality over (t,T)") to obtain T)" —t > (%((23:)1) . Since v(t) = [|[Up(t)||int, we
+1
arrive at th —t > % and the second estimate follows. To obtain the
first one, it suffices to replace t by 0 in the above inequality and use the fact
that ||onine = [|Un(0)||int-

Remark 3.3. If p; = a, 0 < ¢ < I, where « is a positive constant, then one
may take A = 1. It may imply that the potential equals to 1. In this case,

p+1
th = Z+1 and  ||[UL()||int = (p + 1)”1?(th _t)plﬁ for te (O’th)'

4 Convergence of the semidiscrete quenching
time

In this section, under some assumptions, we show that the solution of the

semidiscrete problem quenches in a finite time and its semidiscrete quenching

time converges to the real one when the mesh size goes to zero.
We denote

un(t) = (u(zo, t), .y u(z, )T and  ||ULH)||eo = fax, |U;(t)].

In order to obtain the convergence of the semidiscrete quenching time, we firstly
prove the following theorem about the convergence of the semidiscrete scheme.

Theorem 4.1. Assume that the problem (1)-(3) has a solution u € C*1([0,1]x
[0,T7) such that minse[o, ) Umin(t) = 0 > 0 and the initial data at (5) satisfies

lon — un(0)]|oo =0(1) as h — 0. (14)

Then, for h sufficiently small, the problem (4)-(5) has a unique solution Uy, €
CL([0,T),RI*Y) such that the following relation holds

OrgtB%XTl\Uh(t) —un(t)]loo = 0(llon — un(0)]loc +h*) as h—0. (15)
Proof. Let K > 0 and L > 0 be such that

HurrrrHoo P\—p—1
K —\7P = L.
1 K and pbo(%) L (16)

The problem (4)—(5) has for each h, a unique solution Uy, € C*([0, T}"), R'*1).
Let ¢(h) < min{T,T}'} be the greatest value of ¢ > 0 such that

|0 = un®llos < 5 for te (0,¢(h). (17)
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The relation (14) implies that t(h) > 0 for h sufficiently small. By the triangle
inequality, we obtain

[UR () ling = [Jun () ling = |U(8) = un(t)]oc for ¢ € (0,t(h)),

which implies that
[Un@llnt > 0= 5 = 5 for e (0,4(h)). (18)

Since u € C*!, taking the derivative in z on both sides of (1) and due to the
fact that u,, u,¢ vanish at x = 0 and x = 1, we observe that .., also vanishes
at x = 0 and z = 1. Applying Taylor’s expansion, we discover that
h2
Uy (T4, 1) = 6%u(wis t) — Eumm(i t), 0<i<I, te(0,t(h)).

To establish the above equalities for ¢ = 0 and ¢ = I, we have used the fact
that u, and wg., vanish at x =0 and = = 1. Let ey, (t) = Un(t) — up(t) be the
error of discretization. From the mean value theorem, we have

i 2
dezlit) — 8%e;(t) = bopt; Pl e; + %umm(@,t), 0<i<I, te(0,th)),

where 6; is an intermediate value between U;(t) and u(x;, t). Using (16), (18),
we arrive at

i) _pre,(t) < L) + K2 0<i<L te(OHh).  (19)
Introduce the vector zj(t) defined as follows
zi(t) = e PNl op — un(0)||oo + Kh?), 0<i<I, te(0,t(h)). (20)

A straightforward computation reveals that

dzi

o 0 > Llal + KR, 0<i<I, te(0,t(h)),

zi(0) > e;(0), 0<i<I.
It follows from Comparison Lemma 2.2 that
zi(t) > e;(t) for te(0,t(h)), 0<i<I.
By the same way, we also prove that

5(t) > —ei(t) for te (0,t(h), 0<i<I,
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which implies that
1UR(#) = un(®)loo < eV ([l — un(0)]oo + KR?)  for t € (0,¢(h)).

Let us show that ¢(h) = min{T,T}"}. Suppose that ¢t(h) < min{T,T}'}. From
(17), we obtain

g < [JU(¢(R)) = un(t(h))lloo < DT (lon = un(0)[|oo + Kh?).
Let us notice that both last formulas for ¢(h) are valid for sufficiently small
h. Since the term on the right hand side of the above inequality goes to zero
as h goes to zero, we deduce that £ < 0, which is impossible. Consequently
t(h) = min{T, T}

Now, let us show that ¢(h) = T. Suppose that t(h) = T;L < T. Reasoning as
above, we prove that we have a contradiction and the proof is complete. O

Now, we are in a position to prove the main theorem of this section.

Theorem 4.2. Suppose that the problem (1)-(3) has a solution u which quenches
in a finite time Ty, such that u € C*1(]0,1] x [0,Ty,)) and the initial data at (5)
satisfies the condition (14). Under the hypothesis of Theorem 3.1, the problem
(4)~(5) has a solution Uy, which quenches in a finite time T)" and we have

. h
}1Ll_r>% Tq =1T,.

Proof. Let 0 < ¢ < T,/2. There exists ¢ € (0,1) such that

1 Qp+1
Alp+1)

Since u quenches in a finite time Ty, there exist ho(e) > 0 and a time Tp €
(Ty; — 5,T,) such that 0 < umin(t) < § for t € [Ty, Ty), h < ho(e). It is not
hard to see that umin(t) > 0 for t € [0,Ty], h < ho(g). From Theorem 4.1,
the problem (4)-(5) has a solution Up(t) and we get [|Un(t) — un(t)]|co < £
for t € [0,Tp], h < ho(e), which implies that ||U(To) — un(T0)||ec < § for

h < ho(e). Applying the triangle inequality, we find that -

<< (21)

BN
oM

10 (T0) sas < U3 (T0) = un(To)llow + llun (Do)l < 5 + 5 =2 for b < ho(e).

From Theorem 3.1, Un(t) quenches at the time T)". We deduce from Remark
3.1 and (21) that for h < ho(e),

LUn(To)llhi’ | €
A (p+1) 2

which leads us to the desired result. O

T} =T, <|T) = Tol +|To — Tyl < <e,
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5 Full discretizations

In this section, we study the phenomenon of quenching using a full discrete
explicit scheme of (1)—(3). Approximate the solution u(x,t) of the problem

(1)~(3) by the solution U}(Ln) (Ué") Ul("), ce UI("))T of the following explicit
scheme

sU™ = s2Ul™ — by 0<i<I, (22)

U =p; >0, 0<i<I, (23)

where n > 0,
Ui(n+1) _ Ul(")
Aty
1t U™ > 0, then —(U™)=P=1 > — U™ |21, 0 < i < I, and a straightfor-
ward computation reveals that

Aty

n A n ~ "= "
Ut 2 2RO 4 (1 - 25— b U U,
gD 5 AtnUwi +(1_2Ah_ — bt UM U + At"U}"{, 1<i<I-1,
2AtL, At
n+1 n n n)y—p—1 "
gD 5 2 SUM, (=2 bt U DU,

In order to permit the discrete solution to reproduce the properties of the
continuous one when the time ¢ approaches the quenching time 75, we need to
adapt the size of the time step so that we choose

1-1h
Atn:min{i( 27) IO

inf

with 0 < 7 < 1. We observe that 1 — 2Ahg"

U}(Ln+1)

(M| ~2=1 >, which

inf

implies that > 0. Thus, since by hypothesis U}(LO) = ¢p, > 0, if we take
At,, as defined above, then using a recursion argument, we see that the posi-
tivity of the discrete solution is guaranteed. Here, 7 is a parameter which will
be chosen later to allow the discrete solution U( D) to satisfy certain properties
useful to get the convergence of the numerical quenching time defined below.

2
If necessary, we may take At, = min{%,THU}(L")HﬁF} with K > 2
because in this case, the positivity of the discrete solution is also guaranteed.

The following lemma is a discrete form of the maximum principle.
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(n) (n)

Lemme 5.1. Let a; ’ and V( ™) be two sequences such that a, ’ is bounded and

sV =2V 4 MV >0, 0<i<I, n>0, (24)
vi9 >0, 0<i<I (25)
ThenV(")>Of0rn>O O<z<szAtn_W

Proof. If Vh(") > 0, then a routine computation yields

2At, Aty,
V("‘H) > V(") 1—-2=2" _ At, (n) - (")
IV 4 (=255 At o))V
v s Sy 9020 Ay el v+ Sy 1 << -1,
h? h h?
VD 2 22V 4 (1 252 - AtV
Since At, < — e see that 1 — 2A—tg" - AthagL")Hoo is nonnegative.

S T
From (25), we deduce by induction that V}f") > 0 which ends the proof. O

A direct consequence of the above result is the following comparison lemma.
Its proof is straightforward.

Lemme 5.2. Let V(") W(") and a( ™) be three sequences such that a(")
bounded and

0<1<I, n>0,

VO <O g<i<r.

Then V™ < W™ forn>0,0<i<Iif At, _W

Now, let us give a property of the operator §; stated in the following lemma.
Its proof is quite similar to that of Lemma 3.1, so we omit it here.

Lemme 5.3. Let U™ € R be such that U™ > 0 form > 0. Then we have

5t(U("))_p > —p(U("))_p_ltstU("), n>0.
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The theorem below is the discrete version of Theorem 4.1.

Theorem 5.1. Suppose that the problem (1)-(3) has a solution v € C*2([0, 1] x
[0, T7) such that minyc[o, 1) Umin(t) = p > 0. Assume that the initial data at (23)

satisfies the condition (14). Then, the problem (22)-(23) has a solution U}(Ln)
for h sufficiently small, 0 < n < J and the following relation holds

(n) _ - 2
Ognnangth un(tn)lleo = O(lon — un(0)|loc +h%) as h—0,

where J is any quantity satisfying the inequality Zi;é At, < T and t, =
n—1 A
Zj:o ty-

Proof. For each h, the problem (22)~(23) has a solution U\™. Let N < .J
be the greatest value of n such that

HU}(L") —up(tn) oo < g for n < N. (26)

We know that N > 1 because of (14). Applying the triangle inequality, we
have

N line > [lunto)llint — UL = un(tn) oo = 2 for n <N, (27)

\]

As in the proof of Theorem 4.1, using Taylor’s expansion, we find that for
n<N,0<:< 1,

h? - At,, ~
51‘,“(331'; tn) - 52“(331', tn) + u_p(xi; tn) = _Eurrrr('xu tn) + Tutt(xi; tn)

Let e = U™ — uy(t,) be the error of discretization. From the mean value
theorem, we get forn < N, 0 <4 < I,

n n n)\—p—1 (n h? ~ Atn
5t€1(' ) 5261(' ) = bop(&( )) P 161(' ) + Eurrrr('xutn) — Tutt(xi,tn),

where 51(") is an intermediate value between u(x;, t,) and Ui("). Since Uggrq (T, t),
ug(z,t) are bounded and At,, = O(h?), then there exists a positive constant
M such that

51561(”) - 5261(”) < pbg(ff"))_p_legn) +Mh* 0<i<I,n<N. (28)

Set L = pbo(4) P~ and introduce the vector V}f") defined as follows

V™ = e (|l gp = un(0)]loo + ME2), 0<i<I, n<A.
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A straightforward computation gives

sV — 52V > pbo (¢ Py ™ L MR? 0<i< I, n< N,  (29)

VOO 0<i<I (30)

We observe from (27) that pbo(£™)~P=1 is bounded from above by L. It follows
from Comparison Lemma 5.2 that V}f") > eEL"). By the same way, we also prove
that V}f") > —eEL"), which implies that

1T = () oo < BV (| op — un (0)]|oo + MA2), n < N. (31)

Let us show that N = J. Suppose that N < J. If we replace n by N in (31)
and use (26), we find that

14 N
£ <UL = un(tw)lloo < DT (lon = un(0) oo + MH?).

Since the term on the right hand side of the second inequality goes to zero as
h goes to zero, we deduce that § < 0, which is a contradiction and the proof is
complete. 0

To handle the phenomenon of quenching for discrete equations, we need the
following definition.

Definition 5.1. We say that the solution U}(Ln) of (22)-(23) quenches in a finite
time if HU}(L")Hinf >0 forn >0, but

n—1

nBToo HU}(L")Hinf =0 and TP'= nBToo ZO At; < 4o0.

The number ThAt is called the numerical quenching time of U}(Ln).

The following theorem reveals that the discrete solution U}(L") of (22)-(23)
quenches in a finite time under some hypotheses.

Theorem 5.2. Let U}(Ln) be the solution of (22)-(23). Suppose that there exists
a constant A € (0, 1] such that the initial data at (23) satisfies

Fpi —bip; P < —Ap;?, 0<i<I (32)

Then U}(Ln) is nonincreasing and quenches in a finite time ThAt which satisfies
the following estimate

+1
e < Tlenlid
S (1)

—p—1

. 1—7)h> :
where 7' = Amm{%, ).
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Proof. Introduce the vector .J }(L") defined as follows
JM =5, ¢ AUy 0<i<I, n>0.
A straightforward computation yields for 0 <i < I, n > 0,
I — 625 = 5, (5tU§"> - 52U§">) +AS UMY — AU

Using (22), we arrive at
5o J™ — 627 = —(b; — A5, (UMY P — A2 (UM™Y P, 0<i<I, n>0.
It follows from Lemmas 5.3 and 3.1 that for 0 < i <1, n >0,

51‘,']1'(”) _ 52J1(n) < (bi— A)p(Ui(n))_p_ltstUi(n) + Ap(Ui(n))_p_152Ui(n).
We deduce from (22) that

5o g™ — 827 < ph, UMy P I™ ) 0<i<I, n>o0.
Obviously, the inequalities (32) ensure that J }(LO) < 0. Applying Lemma 5.1, we
get J" < 0 for n > 0, which implies that
Ulnt < U™ — AALUM)PY, 0<i<I, n>0. (33)

These estimates reveal that the sequence U}(L") is nonincreasing. By induction,
we obtain U}(Ln) < U}(LO) = p. Thus, the following holds

(L= D)h2onllmf

AU k™! > Amin{ g T =7 (34)

inf

Let ip be such that HU}(L")Hinf = Ui(:). Replacing i by ip in (33), we obtain
1O g < MU ine (1 = 77), 020, (35)
and by iteration, we arrive at
U g < U ime (1= 7)™ = [nlline (1 = )", 1> 0. (36)

Since the term on the right hand side of the above equality goes to zero as n
approaches infinity, we conclude that HU}(L")Hinf tends to zero as n approaches
infinity. Now, let us estimate the numerical quenching time. Due to (36) and

the restriction At, < THU}(L")HP 1 it is not hard to see that

inf >

S0, < ST enlbh (1 - )P

inf
Use the fact that the series on the right hand side of the above inequality

1
Tllen I

()T 0 complete the rest of the proof. O

converges towards
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Remark 5.1. From (35), we deduce by induction that
10 it < IO iug (1= 7)1 Jor n2q,
and we see that

TRt —to = S5 At < ST I (1 - 7)),

which implies that

1
R 5 L/
h ‘1—1_(1_7./)p+1'

{(1—T)h2|\wh|\;’£—1
2

Since T = Amin , T}, if we take T = h%, we get

’

—p—1
- Amin{
-

1—h2 —p—l )
( h )|‘<)0h|‘1nf ,1}2Am1n{||<ph”41nf ,1}

2

Therefore, there exist constants cg, c1 such that
0<co <7/ <c1 and

/(L= (1—=7 )P =0(1),
for the choice T = h2.

In the sequel, we take 7 = h2.
Now, we are in a position
to state the main theorem of this section.

Theorem 5.3. Suppose that the problem (1)-(3) has a solution u which quenches
in a finite time T, and u € C*%([0,1] x [0,T,)). Assume that the initial data
at (23) satisfies the condition (14). Under the assumption of Theorem 5.2, the
problem (22)—(23) has a solution U}(Ln) which quenches in a finite time TSt and
the following relation holds

lim, TA =T,

Proof. We know from Remark 5.1 that W is bounded. Letting

0 < e < T,/2, there exists a constant R € (0,1) such that

TRPTL

3
(- (87)

Since u quenches at the time T, there exist T € (T —5,T,) and ho(e) > 0 such
that 0 < Umin(t) < % fort € [Th,Ty), h < ho(e). Let g be a positive integer such
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that t, = Zq_:t At, € [Th,Ty) for h < hy(e). It follows from Theorem 5.1 that

the problem (22)-(23) has a solution U}(L") which obeys ||U}(L") —up(tn)]leo < &
for n < ¢, h < ho(e), which implies that
R R

10K ine < U = wn(tg)llow + llun(t) lms < 5+ 5 =R b < hoe).

From Theorem 5.2, U}(L") quenches at the time ThAt. It follows from Remark

At U IEE e (@),
5.1 and (37) that |1} ty] < T < 5 because U, lint < R for

h < hg(g). We deduce that for h < hg(e),
Ty = T < Ty — o] + |ty = T < S+ S <,
which leads us to the result. O

Remark 5.2. Consider the problem (1), (3) for —1 < x < 1, t > 0 with
Dirichlet boundary conditions

u(=1,t) =1, wu(l,t)=1,

where p > 0, ug € CH[—1,1]), ug(—1) = ug(1) = 0, ug(x) is symmetric in
[—1,1], ug(a) >0 in [0, 1].

From the mazimum principle, u is symmetric in t. To obtain an approzimation
of the quenching time for the classical solution u of the above problem, it suffices
to get the one of the classical solution v of the problem (1), (3) with boundary
conditions

v:(0,8) =0, wo(l,t)=1, t>0.

Approximate v by the solution Vi, (t) of the following semidiscrete scheme

d

a%(t) =8%Vi(t) = b Vi P(t), 0<i<I-—1,

K3

Vi) =1, Vi(0)=g¢; >0, 0<i<I,

where @iv1 > wi, 0 < i < I —1. We easily prove that Viz1(t) > Vi(t),
0 <i<I-1. Let us notice that to establish the convergence of the semidiscrete
quenching time, it suffices to take J;(t) = %ft) + A1 —h)V,P#),0<i<T
and one gets without difficulty an estimate as in (12). If we consider a discrete
form, to establish an estimate as in (35), one may take Ji(") = 5tVi(") + A1 -
th) (\Q("))_p, 0 <i < I. On the other hand, one easily obtains the other results
with a slight modification of the methods developed in the paper.
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6 Numerical results

In this section, we present some numerical approximations to the quenching
time for the solution of the problem (1)—(3) in the case where p = 1 and
uo(z) = Ztecos(nr) with 0 < £ < 1. Firstly, we take the explicit scheme in

(22)—(23). Secondly, we use the following implicit scheme
(n+1) (n)

U, - U, n n)\—p— n .
i A7 i _ 52U1( +1) _bl(Ul( )) P 1U1( +1), 0<i<I,

U =g, >0, 0<i<I,

where n > 0, At, = K|U™|[PE! with K = 1073,

inf

In both cases, ¢; = Qﬁ%s(ﬂh), 0 < i < I. For the above implicit scheme,

the existence and positivity of the discrete solution U}(L") is guaranteed using
standard methods (see [3]). In the tables 1-8, in rows, we present the numerical
quenching times, the numbers of iterations and the CPU times corresponding
to meshes of 16, 32, 64, 128. We take for the numerical quenching time ¢,, =
Z;.Zol At; which is computed at the first time when

Aty = |tyi1 — tn] < 10716,

Table 1: Numerical quenching times, numbers of iterations and CPU times
(seconds) obtained with the explicit Euler method for e = 1

I tn n CPU time
16 0.062132 | 4102 1

32 0.062253 | 15883 | 3

64 | 0.062312 | 61257 | 60

128 | 0.062322 | 235525 | 1245

Table 2: Numerical quenching times, numbers of iterations and CPU times
(seconds) obtained with the implicit Euler method for e = 1

I tn n CPU time
16 0.062302 | 4017 1

32 0.062317 | 15499 | 6

64 | 0.062323 | 59679 138

128 | 0.062324 | 229179 | 4260

Table 3: Numerical quenching times, numbers of iterations and CPU times
(seconds) obtained with the explicit Euler method for ¢ = 1/10
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I tn n CPU time
16 0.121368 | 2389 4

32 0.121210 | 8882 16

64 | 0.121170 | 32769 | 222

128 | 0.121157 | 119887 | 3887

Table 4: Numerical quenching times, numbers of iterations and CPU times
(seconds) obtained with the implicit Euler method for e = 1/10

I tn n CPU time
16 0.121316 | 14047 | 25

32 0.121326 | 14071 | 45

64 | 0.121328 | 14091 | 168

128 | 0.121329 | 14098 | 795

Table 5: Numerical quenching times, numbers of iterations and CPU times
(seconds) obtained with the explicit Euler method for e = 1/100

I tn n CPU time
16 0.124875 | 2356 3

32 0.124694 | 8728 17

64 | 0.124649 | 32091 236

128 | 0.124638 | 112964 | 3974

Table 6: Numerical quenching times, numbers of iterations and CPU times
(seconds) obtained with the implicit Euler method for e = 1/100

I tn n CPU time
16 0.124822 13915 | 24
32 0.1248195 | 13920 | 44
64 | 0.1248193 | 13923 | 168
128 | 0.1248191 | 13925 | 793

Table 7: Numerical quenching times, numbers of iterations and CPU times
(seconds) obtained with the explicit Euler method for ¢ = 1/1000

I tn n CPU time
16 0.125208 | 2351 3

32 0.125024 | 8708 17

64 | 0.124979 | 32006 191

128 | 0.124957 | 112873 | 3852

Table 8: Numerical quenching times, numbers of iterations and CPU times
(seconds) obtained with the implicit Euler method for e = 1,/1000
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I tn n CPU time
16 0.125155 13914 | 26

32 0.12515090 | 13917 | 52

64 | 0.12515091 | 13918 | 154

128 | 0.12515093 | 13919 | 781

Remark 6.1. When e =0 and p =1, we know that the quenching time of the
continuous solution of (1)-(8) is equal 0.125. We have also seen in Remark 3.3
that the quenching time of the semidiscrete solution is equal 0.125. We observe
from Tables 1-8 that when € decays to zero, then the numerical quenching time
of the discrete solution goes to 0.125.

In the following, we also give some plots to illustrate our analysis. For the
different plots, we have used both implicit and explicit schemes in the case
where I = 1/16,¢ = 1.

In Figures 1 and 2, we can appreciate that the discrete solution is nonincreasing
and reaches the value zero at the last node.

In Figures 3 and 4, we see that the approximation of i, (¢) is nonincreasing
and reaches the value zero at the time ¢ ~ 0.062.

In figures 5 and 6, we observe that the approximation of u(x,T) is nonin-
creasing and reaches the value zero at the last node. Here, T is the quenching
time of the solution wu.

In the following, we also give some plots to illustrate our analysis. In Figures
1 to 12, we can appreciate that the discrete solution blows up globally. Let
us notice that, theoretically, we know that the continuous solution blows up
globally under the assumptions given in the introduction of the present paper.
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FIGURE 1 — Evolution of the discrete
solution, source £ = % I = 16 (implicit

scheme).
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FIGURE 2 — Evolution of the discrete
solution, source £ = 7 I = 16 (explicit

scheme).
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FIGURE 3 - Evolution of the discrete
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FIGURE 5 — Evolution of the discrete
solution, source £ = % I = 32 (implicit

scheme).
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FIGURE 7 — Evolution of the discrete
solution, source £ = T:n I = 32 (impli-

cit scheme).
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FIGURE 4 - Evolution of the discrete
solution, source £ = ﬁ I =16 (expli-

cit scheme).

FIGURE 6 — Evolution of the discrete
solution, source ¢ = % I = 326 (expli-

cit scheme).

FIGURE 8 — Evolution of the discrete
solution, source £ = 1—10 I = 32 (explicit

scheme).
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fua Ep
£ B £ 3
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FIGURE 9 — Evolution of the discrete FIGURE 10 — Evolution of the dis-
solution, source £ = % I = 16 (implicit crete solution, source ¢ = 1—10 = T8
scheme). (explicit scheme).
fau 2o
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e Eon
k. \ 7 \
Boc: San
FicUurRE 11 — Evolution of the dis- FIGURE 12 — Evolution of the dis-
crete solution, source £ = ﬁ I = 16 crete solution, source £ = ﬁ I'=16
(implicit scheme). (explicit scheme).
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