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Universidade Federal de Viçosa,
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Abstract

We are interested in finding non-negative integer solutions for the
Diophantine equation px − 2y = z2, where p = k2 + 2 is a prime num-
ber and k ≥ 0. We show that all the positive integer solutions of this
equation are given by (1, 1, k) if p ≥ 11, (1, 1, 1), (3, 1, 5), (2, 3, 1) if p = 3.
In the case p = 2 the equation has two infinite and disjoint families of
solutions. The proofs are based on the use of the Catalan-Mihǎilescu
Theorem (old Catalan conjecture) and properties of the modular arith-

metic. In addition, we prove that equations of type px − 2y = w2u

with
u ≥ 2 do not have positive integer solutions if p ≥ 11 and k is not a
perfect square. Moreover, we find exactly two positive integer solutions
for px − 2y = w2u

, with u ≥ 2, when p = 3.

1 Introduction

Diophantine equations of the form ax +by = cz have been studied by numerous
mathematicians for many decades and by a variety of methods. One of the

Key words: Congruences; Exponential Diophantine equations; Catalan’s conjecture.
2010 AMS Classification: 11A07, 11A41, 11D61.

103



104 On the exponential Diophantine equation...

first references to these equations was given by Fermat-Euler [2], showing that
(a, c) = (5, 3) is the unique positive integer solution of the equation a2 +2 = c3.
Scott [7] proved that if a > 1 and b > 1 satisfy gcd(a, b) = 1 and c is prime,
then the equation ax + by = cz has at most two solutions in positive integers
(x, y, z), when c �= 2, and at most one solution (x, y, z) when c = 2, except for
two cases (taking a < b): (a, b, c) = (3, 5, 2), which has exactly three solutions
(x, y, z) = (1, 1, 3), (3, 1, 5), (1, 3, 7) and (a, b, c) = (3, 13, 2), which has exactly
two solutions (x, y, z) = (1, 1, 4), (5, 1, 8) ([3], Section D9, p. 87). In 2007,
Acu [1] solved the equation for a = 2, b = 5 and z = 2. The non-negative
integer solutions to the equation are (x, y, c) ∈ {(3, 0, 3), (2, 1, 3)}. In 2011,
Suvarnamani [10] studied the Diophantine equation 2x + py = z2. Rabago [6]
studied the equations 3x + 19y = z2 and 3x + 91y = z2. He found exactly two
solutions (x, y, z) in non-negative integers for each one. The solution sets are
{(1, 0, 2),(4, 1, 10)} and {(1, 0, 2),(2, 1, 10)}, respectively. A. Suvarnamani
et al. [9] found solutions of two Diophantine equations 4x + 7y = z2 and
4x +11y = z2. In 2019, Thongnak et al. found exactly two non-trivial solutions
for the equation 2x−3y = z2, namely (1, 0, 1) and (2, 1, 1). In this paper, we use
elementary methods and Catalan-Mihǎilescu Theorem (Theorem 2.1) to study
exponential Diophantine equations of the form px − 2y = z2, where p = k2 + 2
are prime numbers, (x, y, z) ∈ N3 e k ∈ N.

2 Notation and Preliminary Results

Denote by Z be the set of integer numbers and let N be the set of all pos-
itive integers together with the number 0, that is, N = {0, 1, 2, 3, . . .}, such
a set will be called the set of natural numbers. Define N∗ = N\{0} and
Nq = N × N × · · · × N as the cartesian product of q copies of N. We will
use the ≡ symbol for congruence module m and a ≡ b (mod m) means that
a is congruent to b module m. The set of all non-negative integer solutions of
the equation px − 2y = z2 will be said simply the solution set of the equation,
i. e., the set {(x, y, z) ∈ N3 | px − 2y = z2}.

The following theorem was proved by Mihǎilescu in [4] and is written in the
form of his famous conjecture.

Theorem 2.1. (Catalan-Mihǎilescu Theorem) (3, 2, 2, 3) is the unique solution
(a, b, x, y) ∈ N4 for the Diophantine equation ax−by = 1 where each a, b, x, y >
1.

Remark 2.2. The equation ax − z2 = 1 has no positive integer solutions if
a, x, z > 1.

We need the important result obtained by Sury [8]. This result was obtained
first by Nagell [5], but the proof is no elementary, while the Sury’s proof is
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elementary.

Theorem 2.3. The Diophantine equation z2 + 2 = yx, x > 1 has only the
solutions (z, y, x) = (±5, 3, 3).

The next lemma has easy proof. It will be used in the proofs of the main
theorems.

Lemma 2.4. There is no w ∈ Z such that w2 ≡ 3 (mod 4).

3 Main Theorems

The following results were divided into three main parts, one for prime numbers
≥ 11 and the other two for prime numbers 3 and 2.

Theorem 3.1. If p = k2 + 2 is a prime number for some k ≥ 3, then the
solution set of the Diophantine equation

px − 2y = z2 (1)

is given by {(0, 0, 0), (1, 1, k)}.

Proof. The proof will be done by testing several cases. We will assume that
x, y, z are natural numbers such that they satisfy the equation px − 2y = z2.

Case 1. (x = 0). We will divide this case into the subcases y = 0 and y ≥ 1.

Case i: If y = 0, then z2 = 0 and so (0, 0, 0) is a solution of the equation.

Case ii: If y ≥ 1, then z2 = 1 − 2y ≤ −1 which is an absurd.

Case 2. (x = 1). In this case we have p − 2y = z2. Let us divide this case into
the subcases y = 0, y = 1 and y ≥ 2.

Case i: If y = 0, then p − 1 = z2 = k2 + 1, so we have (z − k) · (z + k) = 1,
whence we conclude that k = 0, which is a contradiction with k ≥ 3.

Case ii: If y = 1, then p − 2 = z2 = k2, so z = k and a solution to the
equation is equal to (1, 1, k).

Case iii: In the last subcase one rewrite p−2y = z2 as z2−k2 = 2−2y from
which one obtain (z − k) · (z + k) = 2 · (1− 2y−1). Since z and k are both odd
numbers, there are non-zero integers a, b such that z − k = 2a and z + k = 2b.
It follows that 2ab = 1−2y−1 which is an absurd since the left side is even and
the right side is odd because y ≥ 2.
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Therefore, (1, 1, k) is the only solution to the equation (1) in this case.

Case 3. (x > 1, y = 0). In this case, the equation (1) is reduced to px−z2 = 1.
Now one apply Remark 2.2 to conclude that z ∈ {0, 1}. If z = 0, we have
px = 1 which implies that x = 0, a contradiction. In the latter subcase one
obtain px = 2 which is an absurd since p ≥ 11. Therefore there is no solution
of (1) in this case.

Case 4. (x > 1 and y = 1). In this case the equation (1) is reduced to
px − 2 = z2 which is a contradiction with Theorem 2.3. Therefore, there is no
solution of (1) in this case.

Case 5. (x > 1 even and y > 1). We will show that this case also has no
positive integer solutions. In this case there exists t ∈ N∗ such that

p2t − z2 = 2y =⇒ (
pt − z

) · (pt + z
)

= 2y.

Since pt − z < pt + z are both even numbers, there exists α ∈ N such that
pt − z = 2α and pt + z = 2y−α from which one obtain

2pt = 2α + 2y−α = 2α(1 + 2y−2α). (2)

Let us divide this case into the subcases α = 0, α = 1 and α ≥ 2.
If α = 0, we have 2pt = 1 + 2y which is an absurd for y > 1. If α ≥ 2, we

have pt = 2α−1(1 + 2y−2α) which is also an absurd because the left side is an
odd number and the right one is even. If α = 1, the equality (2) is reduced to
pt−2y−2 = 1. Now one apply Theorem 2.1 to conclude that t = 1 or y ∈ {2, 3}.
We divide the subcase α = 1 into the two subcases.

Case i: If t = 1, then 2y−2 = p − 1 = k2 + 1. If y ∈ {2, 3}, we have
k2 + 1 ∈ {1, 2} which implies that k ∈ {0, 1}, which is a contradiction with
k ≥ 3. Now, we suppose y ≥ 4. In this subcase we have 2y−2 ≡ 0 (mod 4) and
therefore k2 ≡ 3 (mod 4), which is a contradiction with Lemma 2.4.

Case ii: If y ∈ {2, 3}, then pt ∈ {2, 3}, which is a contradiction because
pt ≥ 11.

Case 6. (x > 1 odd and y > 1). In this case the equality (1) can be rewritten
as p2s+1 − 2y = z2, for some s ≥ 1. Since p is an odd prime it follows that
either p ≡ 1 (mod 4) or p ≡ 3 (mod 4), moreover 2y ≡ 0 (mod 4) because
y ≥ 2. If p ≡ 1 (mod 4), then k2 ≡ 3 (mod 4) and by Lemma 2.4 we have a
contradiction. Suppose p ≡ 3 (mod 4). In this case

p2s ≡ 9s ≡ 1 (mod 4) ⇒ p2s+1 ≡ 3 (mod 4) ⇒ z2 ≡ 3 (mod 4),

an absurd by Lemma 2.4. Therefore, there is no solution of (1) in this case. �
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Corollary 3.2. Let p = k2 +2 be a prime number for some integer k ≥ 3. If k
is not a perfect square, then (0, 0, 0) is the unique solution of the Diophantine
equation

px − 2y = w2u

, (x, y, w) ∈ N3 and u ≥ 2. (3)

Proof. We write px − 2y = (w2u−1
)2, u ≥ 2. According to Theorem 3.1 we

have w2u−1
= 0 or w2u−1

= k. In the first case, w = 0, thus finding the trivial
solution for equation (3). In the second case, we conclude that k is a perfect
square, a contradiction. Therefore, px − 2y = w2u

has no non-trivial solution.
�
Corollary 3.3. Let p = k2 + 2 be a prime number for some integer k ≥ 3.
If k is a perfect square, then {(0, 0, 0), (1, 1,

√
k)} is the solution set of the

Diophantine equation px − 2y = w4.

Proof. As in Corollary 3.2, w2 ∈ {0, k} so w = 0 and w =
√

k, and the result
follows. �

As an example if p = 83, we have k = 9 and the only non-negative integer
solutions of 83x − 2y = w4 are (0, 0, 0) and (1, 1, 3). If p = 11, we have k = 3
and (0, 0, 0) is the unique non-negative integer solution of 11x − 2y = w4.

Remark 3.4. The proofs of the results below are similar to the proofs of the
Theorem 3.1 and its corollaries, we will detail only the situations that are not
similar. The equation 2x − 3y = z2 was studied in [11].

Theorem 3.5. The set {(0, 0, 0); (1, 1, 1); (3, 1, 5); (2, 3, 1)} is the solution set
of the Diophantine equation

3x − 2y = z2, (x, y, z) ∈ N3. (4)

Proof. Let (x, y, z) ∈ N3 be a solution of the equation (4).

Similarly to the Cases 1 and 2 of Theorem 3.1 one obtain that (0, 0, 0) is
the unique solution of (4) in the case x = 0, (1, 1, 1) is the unique solution of
(4) in the case x = 1 and there is no solution of the equation (4) in the Case 3
(x > 1, y = 0) and in the Case 6 (x > 1 odd and y > 1).

Case 4 (x > 1 and y = 1). In this case the equation (4) is reduced to
3x − 2 = z2. For [8] the only positive integer solution to this equation is
(x, z) = (3, 5). So we have a third solution of the equation (4) given by (3, 1, 5).

It remains for us to analyze the analogue of Case 5, for that we will use the
same notations of what were done before.

Case 5 (x > 1 even and y > 1). Take x = 2t, t > 0. In this case the equation
is reduced to 32t − 2y = z2. As before, we should have α �= 0 and α � 2, so
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α = 1. So we find the following equation 3t−2y−2 = 1. This equation can only
be solved with positive integers if t = 1 or y ∈ {2, 3}. If y = 2, we have 3t = 2
a contradiction. If y = 3, we have 3t = 3 and so t = 1. Therefore, x = 2 and so
we have z2 = 1 which implies that z = 1. We found the last solution which is
(2, 3, 1). �

Corollary 3.6. The solution set of the Diophantine equation 3x − 2y = w2u

,
with u ≥ 2, is {(0, 0, 0); (1, 1, 1); (2, 3, 1)}.
Theorem 3.7. The solution set of the Diophantine equation

2x − 2y = z2, (x, y, z) ∈ N3, (5)

is the disjoint union A∪̇B where A = {(s, s, 0)|s ∈ N} and B = {(2s +
1, 2s, 2s)|s ∈ N}.

Proof. If y = 0, we have the equation 2x − z2 = 1 which by Theorem 2.1 has
no solution if x > 1 and z > 1. So we will have a solution only if x ∈ {0, 1} or
z ∈ {0, 1}. If x = 0, we have z2 = 0 which implies that z = 0, therefore (0, 0, 0)
is a solution of the equation. If x = 1, we get z2 = 1 from which we conclude
that z = 1, so (1, 0, 1) is the second solution. The cases where z ∈ {0, 1} give
the same solutions as found so far.

Let y = 1. In this case the equation (5) is reduced to 2x − 2 = z2. For Sury
([8]) there are no non-negative integer solutions if x ≥ 2. Thus x ∈ {0, 1}. If
x = 0, we have z2 = −1, a contradiction. If x = 1, we have z2 = 0 therefore
(1, 1, 0) is the third solution.

Now consider y > 1. Let’s divide it into two subcases.

Case i) If x = y. In this case z2 = 0 which implies that z = 0, so (x, x, 0)
they are solutions of the equation with x > 1.

Case ii) If x > y > 1 (the case x < y does not occur because in this case
z2 < 0, a contradiction). Since z2 = 2x − 2y, we have z > 0. In this case the
equation is reduced to 2y · (2x−y − 1) = z2. Since 2x−y − 1 is odd we have
y = 2s, s ≥ 1, because z is a positive integer. We can rewrite the equation as
follows 22s ·(2x−2s−1) = z2, therefore z = a·2s where a ≥ 1 and a2 = 2x−2s−1.
Rewriting the previous equality as a2 − 2x−2s = −1, we observe that it will
have no solutions if (x − 2s) > 1 and a > 1 (again applying Theorem 2.1). So
it remains to analyze the cases a = 1 and x− 2s = 1. If a = 1, we have z = 2s

and hence

22s · (2x−2s − 1) = 22s ⇒ 2x−2s = 2 ⇒ x = 2s + 1.

The other case that we should analyze gives the same solutions. So another
family of solutions is given by the triples (2s+1, 2s, 2s), s ≥ 0. We have proven
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that the solution set of the equation (5) is contained in the set A∪̇B. Finally,
every element of A∪̇B is a solution of the equation (5). �

Corollary 3.8. The solution set of the Diophantine equation 2x − 2y = w4,
(x, y, w) ∈ N3, is the disjoint union A∪̇ C where A = {(t, t, 0)|t ∈ N} and
C = {(4t + 1, 4t, 2t)|t ∈ N}.

Proof. Clearly every element of A∪̇ C is a solution of the equation 2x − 2y = w4.
Reciprocally, let (x̂, ŷ, ŵ) ∈ N3 be a solution of 2x−2y = w4. If one write ẑ = ŵ2

then (x̂, ŷ, ẑ) is a solution of the equation 2x − 2y = z2, (x, y, z) ∈ N3. It follows
from Theorem 3.7 that either ẑ = 0 and x̂ = ŷ or ẑ > 0 and there exists t ∈ N
such that ẑ = 22t, ŷ = 4t, x̂ = 4t + 1. In any case, (x̂, ŷ, ŵ) ∈ A ∪̇C. �
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[4] P. Mihǎilescu, Primary ciclotomic units and a proof of Catalan’s conjecture, Journal
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