Southeast Asian Journal of Sciences, Vol. 11, No 2 (2025), pp. 74-80

APPROXIMATING TRUST FUNCTIONS
FROM MODELS IN NEURON NETWORK
AND LIE ALGEBRA

Dinh Que Tran

Department of Information Technolo
Posts and Telecommunications Institute of Technology (PTIT)
Hanoi, Vietnam
E-mail: quetd@ptit.edu.vn

Abstract

This paper is to describe a tensor representation of features needed
for trust computing in complex networks. Then we propose a novel hy-
brid framework that functionally approximates trust functions defined
over multi-dimensional trust tensors using both neural networks and Lie
algebra-based mappings. The approximation capability of neural net-
works in this context and utilize Lie group structures are to capture
structural symmetries and behaviors in trust propagation.

1 Introduction

In the recent years, lots of research concerns with trust modeling in complex
networks have been proposed, such as [3, 5, 6, 8, 9]. However, most of work
lack concerns of tensor representation of features and applying neuron network
models and Lie algebra [7] for approximating trust functions. This paper is
a continuation of our study [4] to address the research gap. The content is
to describe the tensor representation of trust model and then to apply the
functional approximate [1, 2] for trust functions.

Key words: trust modeling, lie algebra, approximation, tensor model, deep learning.
2020 AMS Mathematics classification: 68T07, 68T99, 91D30, 68R10, 68M10.

74

DinH QUE TRAN 75

2 General Definition in Tensor

A complex network is modeled as a directed graph G = (V| F), in which V is a
set of nodes (agents) and E is a set of edges. In this paper, we denote n to be
the number of nodes in V. Let 7 € [0,1]"*"*4 be a 3-way trust tensor, where
Tij: = x(i,j) € [0,1]% denotes the normalized feature vector characterizing
the trust-related interaction from node ¢ (trustor) to node j (trustee). Each
slice «(i,j) includes d normalized factors such as familiarity, responsibility,
dispatching efficiency, influence, etc. In trust-aware systems and multi-agent
networks, a tensor-based representation enables multidimensional modeling of
trust relationships. We formally define the trust tensor as follows.

Definition 1 (Trust Tensor). Let T € [0,1]"*"*? be a third-order tensor,
where:

e n is the number of nodes (agents) in the network,
e d is the number of trust-related features,

o Ti;. =x(i,5) € [0,1]% is the trust feature vector from node i (trustor) to
node j (trustee).

Each entry T; j i € [0, 1] represents the normalized value of the k-th trust factor
characterizing the interaction between i and j. Thus, the trust tensor is a
mapping:

T:{l,....,n} x{1,...,n} = [0,1]%, (5,5) — (i, 7).

For example, Figure 1 illustrates a tensor of relationships from a node
(trustor) to another (trustee) with three features.

2.1 Example Trust Tensor

Consider a network with such n = 3 nodes and d = 4 trust features. It means
each trust vector (i, j) € [0,1]? typically includes the following components:

e 11(%,7): familiarity from ¢ to j,

):

e x5(7,7): responsibility of j as perceived by i,
):
):

s

3(¢,7): dispatching efficiency from i to 7,

(

(

(i,]
e 24(i,7): influence of node j in the global or local network.
The trust feature vector from node 1 to node 2 is:

©(1,2) = Ti0. = [0.8, 0.6, 0.9, 0.4],

76 Approximating Trust Functions from Models in Neuron Network

atures k

Trustee

Familiarity

Trustor 4 Dispatch

Influence

Figure 1: 3D Trust Tensor T (i,j, k) — capturing trustor-trustee-feature rela-
tionships.

and from node 2 to node 3 is:
x(2,3) = Ta3. =103, 0.7, 0.5, 0.6].

Here, the vector entries correspond respectively to familiarity, responsibility,
dispatch efficiency, and influence, normalized into the interval [0, 1]. This ten-
sor structure forms the input for neural models (e.g., CNNs, LSTMs), enabling
learning over multidimensional, directional trust representations.

3 Trust Function on Tensor

Definition 2 (Trust Function in Tensor Space). A trust function is a mapping
Forust 1 [0,1]4 = [0,1], with Fipust(T55,.) = trust(i, 5),

that satisfies the following conditions:

(C1) Boundedness: For all x € [0,1]%, we have Fust(x) € [0, 1].

(C2) Continuity: The function Firus is continuous on [0,1]4.

(C3) Differentiability: Fiiust is continuously differentiable on the open unit
cube (0,1)%, i.e., Fiuss € CH((0,1)%).

(C4) Monotonicity (Optional): If a feature xy positively contributes to
trust, then
8«/Ttrust

> <
B () >0 forallx e (0,1)

DinH QUE TRAN 77

This tensor-based formulation enables generalized trust modeling in multi-
relational networks. It is particularly suitable for integration with deep learning
models (e.g., tensorized neural architectures), differentiable optimization, and
advanced trust propagation mechanisms across heterogeneous graph data.

3.1 Properties of Trust Function Class
Proposition 1 (Convexity). Let Firust © [0,1]% — [0,1] satisfy (C1)-(C3).

(a) If Firust is convez, then any weighted average of trust vectors results in a
trust score no worse than the average trust:

ftrust(Aml + (1 -)\).’Bz) S Aftrust(ml) + (1 -)\)‘Ftrust(mQ)y VA S [07 1]
(b) If Firust is Lipschitz continuous with constant L, then:
|-Ftrust(x) - ftrust(y)| S LHw - y”2 Vm,y S [07 1]d

4 Approximation of Trust Functions

Theorem 1 ([1, 2] Universal Approximation Theorem). Let 0 : R — R be
any non-constant, bounded, and continuous activation function. Then, for any
continuous function f : [0,1]" — R and for any e > 0, there exists a feedforward
neural network with a single hidden layer of the form:

N
F(SC) :Zaia(wjm+9i),
=1

where N € N, ; € R, w; € R™, and 0; € R, such that:

sup |f(x) — F(z)| <e.
xz€[0,1]™

4.1 Approximation with Neuron Network Models

Proposition 2 (Neural Approximability of Trust Functions). Let Firust :
[0,1]¢ — [0,1] be any continuous trust function. Then, for any ¢ > 0, there
ezists a feedforward neural network F with a single hidden layer and sigmoidal
activation such that

sup | Ferust(x) — F(x)| < €.
x€[0,1]¢
Proof. This is a direct application of the Universal Approximation Theorem 1.
Since Firust 18 continuous on a compact domain [0, 1]d, a neural network with
a single hidden layer and non-constant bounded continuous activation (e.g.,
sigmoid or ReLU) can approximate it arbitrarily well. (]

78 Approximating Trust Functions from Models in Neuron Network

Proposition 3 (ReLU-CNN Approximability). Any trust function Feyst sat-
isfying conditions (C1)-(C3) can be approximated arbitrarily well by a CNN
with ReLU activation.

Proof. By the Universal Approximation Theorem (UAT), any continuous func-
tion on a compact domain (here [0, 1]¢) can be approximated by a feedforward
neural network with ReLU. CNNs with ReLU act as structured feedforward
networks with local filters, and can approximate Fi.ust using stacked convolu-
tional layers and dense outputs:

||ftrust(w) - ‘FCNN(:B)HOO <e€

4.2 Function Approximation on Lie Algebras

Let g be a finite-dimensional real Lie algebra. Since every finite-dimensional
Lie algebra g is a real vector space of dimension d, we have g = R¢ as topo-
logical vector spaces. Therefore, any continuous function defined on g can be
approximated using a standard feedforward neural network.

Proposition 4 (Universal Approximation on Lie Algebras). Let g be a finite-
dimensional Lie algebra over R, and let f : g — R be a continuous function.
Then, for any compact subset K C g and any € > 0, there exists a neural
network f : g — R with a single hidden layer such that:

sup f(X)—f(X) <e.
XeK

This result follows from the classical Universal Approximation Theorem applied
to RY, since any Lie algebra g of dimension d can be identified with R%. In
practice, we can flatten the matrix representation of an element X € g (e.g.,
skew-symmetric or traceless matrix) into a vector z € R?, and train a neural
network fp() to approximate f(X).

4.3 Illustrated Example

Let g = s0(3) and denote a skew-symmetric matrix by

0 —XI3 i)
X =| x3 0 -1, X = ($1,$2,$3)T S R3.
—x2 Iy 0

Suppose the trust function depends on the Lie-algebra feature X (e.g. local
rotational influence) and scalar features s = (fam, resp, disp) € [0, 1]3. Define

f:s0(3) x [0,1] — [0,1], f(X,s)

DinH QUE TRAN 79

as any continuous scoring rule (e.g. a normalized utility). By Proposition 2, for
every € > 0 there exists a neural network F taking input (X, fam, resp, disp) €
RS that approximates f uniformly on any compact subset.

For more structured learning tasks on Lie algebras or Lie groups, geometric
deep learning and equivariant neural networks can be employed to better re-
spect the algebraic properties. Figure 2 illustrates a Trust Tensor Slice 7; ;..
and Neural Network Approximator.

Input Layer Hidden Layer Output

Z Z7j) = 7;7]'71

Figure 2: Trust Tensor Slice 7; ;. and Neural Network Approximator

5 Conclusion and Discussions

This paper describes the tensor concept for modeling trust computing and
trust functions on tensors. Some results on functional approximation have been
presented. The approximation theorem allows approximating f by a network
after flattening, it is often advantageous to respect Lie structure:

e If f is invariant or equivariant under the adjoint action of a Lie group
(or other group symmetries), impose those symmetries in the architec-
ture (e.g. use layers that are invariant under conjugation or the adjoint
action).

e Use exponential /log maps when combining Lie-algebra features with group-
valued features, or parameterize outputs on the Lie algebra to preserve
algebraic constraints.

e Graph neural networks or message-passing models that incorporate Lie
features (as edge/node features) can capture relational structure in trust
networks.

However, when modelling in practice, we need:

1. Choose an identification ® : g — R (e.g. vectorization of matrix en-
tries or a basis expansion). Standardize/normalize features on a compact
domain (helps approximation and training).

80

Approximating Trust Functions from Models in Neuron Network

2. If invariances are known (e.g. invariance under certain group actions), de-

sign equivariant layers. Train the network on labeled trust-data (X, s;, y;)
with a loss such as MSE or cross-entropy, depending on the target.

. Validate on held-out data and, if needed, restrict model to lie-algebra-

respecting outputs (project back to g with linear constraints). The uni-
versal result is existential — it does not give the number of neurons nor
a training procedure.

. If g is high-dimensional, sample complexity may be large; structure-aware

models reduce sample needs. For time-varying or stochastic trust, con-
sider dynamic models (RNNs, continuous-time flows) and extend the com-
pactness/continuity assumptions accordingly.

These probelms need to be investigated furthermore. The research results will
be presented in our future work.

References

(1]

2]

(3]

(4]

(5]

[6]

[7]

Cybenko George, Approximation by super,positions of a sigmoidal function, Mathe-
matics of Control, Signals and Systems, Vol.2, No.4, 303-314, Springer, 1989

Hornik, Kurt and Stinchcombe et alt., Multilayer feedforward networks are universal
approximators, Journal of Neural Networks, Vol.2, No.5, pp.359-366, Pergamon, 1989.

Dinh Que Tran, Phuong Thanh Pham, TreeXTrust: A Tree-Based Explainable Trust
Model Using Social Semantics and Influence, Journal of Computer Science, AGH Uni-
versity of Science and Technology, 26(2), pp. 1-25, 2025.

Dinh Que Tran, Initial study on trust computation based on tensor and lie algebra in
complex networks, submitted to Southeast Asian Journal of Sciences.

Zheng Du, Min-Hung Chen, and Yung-Hsiang Lu, Tensor-based Trust Evaluation with
Lie Algebra for Dynamic Networks, Journal of Computer Science and Systems, vol.
19(3), 2023.

Taco Cohen and Max Welling, Group Equivariant Convolutional Networks, Interna-
tional Conference on Machine Learning (ICML), 2016.

Alexander Kirillov, Introduction to Lie Groups and Lie Algebras, Cambridge University
Press, 2008.

Mei Lu and Fanzhang Li, Survey on Lie Group Machine Learning,
https://www.sciopen.com/article/10.26599/BDMA.2020.9020011, 2020.

Sheng Zhang, Hang Su, and Jun Zhu, Learning Graphical Lie Algebra with Deep Struc-
tured Embedding, Advances in Neural Information Processing Systems (NeurIPS),
2018.

