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Abstract

Let (Xnj , j = 1, 2, . . . , n; n = 1, 2, . . .) be a row-wise triangular ar-
ray of independent identically distributed random variables. Let Nq, q ∈
(0, 1) be a geometric random variable with probabilities P (Nq = k) =
q(1−q)k−1 , k = 1, 2, . . . . Moreover, suppose that Nq, q ∈ (0, 1) is indepen-
dent of all Xnj , j = 1, 2, . . . ; n = 1, 2, . . . . Let SNq = Xn1 + Xn2 + . . . +
XnNq denote the geometric sum of independent identically distributed
random variables Xnj , j = 1, 2, . . . ; n = 1, 2, . . . . (by convention, S0 = 0).
The main purpose of this article is to establish the rate of convergence in
some Renyi-type limit theorems for geometric sums via Trotter-operator
method.

1 Introduction

Let (Xnj, j = 1, 2, . . . , n; n = 1, 2, . . .) be a row-wise triangular array of inde-
pendent identically distributed random variables with finite mean E(Xnj) =
m and 0 < D(Xnj) = σ2 < +∞, j = 1, 2, . . . , n; n = 1, 2, . . . . Let Nq ∼
Geo(q), q ∈ (0, 1) be a geometric random variable with probabilities P (Nq =
k) = q(1−q)k−1, k = 1, 2, . . . . Moreover, suppose that the Nq is independent of
all Xnj, j = 1, 2, . . . , n; n = 1, 2, . . . . It it to be noticed that Nq and all random
variables Xnj, j = 1, 2, . . . , n; n = 1, 2, . . . . are defined on the same probability
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space (Ω, A, P). We will denote by SNq the geometric sum

SNq = Xn1 + Xn2 + . . . + XnNq , S0 = 0 by convention. (1)

Up to the present one of well-known limit theorems for geometric sums is
the Renyi’s limit theorem (see Theorem 8.1.5 page 246, [14]). By its statement,
let (Xj , j = 1, 2, . . .) be a sequence of independent and identically distributed
random variables with common positive mean E(Xj) = m < +∞, j = 1, 2, . . . .
Then,

q(X1 + X2 + . . . + XNq ) d−→ Z(m), as q → 0+, (2)

where Z(m) is an exponential distributed random variable with positive mean
E(Z(m)) = m and symbol d−→ is denoted by the convergence in distribution.

During the last several decades the limit theorems for geometric sums have
risen to become one of the most important problems having the deep applica-
tions to insurance risk theory, stochastic finance, queueing theory (see [2], [3],
[9], [14], [13], [8]). Moreover, it is well known that characteristic function have
been used in study of Renyi’s limit theorem as a power mathematical tool (see
for instance [16], [14]).

The goal of this paper is to establish the rates of convergence in some Renyi-
type limit theorems for geometric sums of row-wise triangular array indepen-
dent identically distributed random variables via Trotter-operator method. It
is worth pointing out that all proofs of theorems of this paper utilize Trotter’s
idea from Trotter [20] and the method used in this paper is the same as in works
of Renyi [16], Butzer, Hahn, and Westphal [4], [5] and [6], Rychlick and Szynal
[17] and [18], Cioczek and Szynal [7], Hung and Thanh [12]. Note that the effect
of Trotter-operator method also is powerful in cases of the limit theorems for
random sums of multidimensional random variables (in the multidimensional
case, the reader may refer to [15], [19], [5], [10]).

The rest of the paper is organized as follows. Some notations, definitions
and properties needed in this paper will be presented in Section 2. The Section
3 is devoted to the rates of convergence in some Renyi-type limit theorems for
geometric sums via Trotter-operator method.

2 Preliminaries

Throughout this paper, the symbols CB(R) will denote the set of all bounded
uniformly continuous functions on R and

Cr
B(R) := {f ∈ CB(R) : f(j) ∈ CB(R), j = 1, 2, . . . , r}, r ∈ N.

Note that CB(R) = Co
B(R), by convention. The norm of function f ∈ CB(R)

is defined by ‖f‖ = supx∈R
|f(x)|.
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For the purpose of the present paper, we will recall definition of Trotter’s
operator (see [20], for the definition of Trotter operator).

Definition 2.1. (Trotter [20], 1959) Let X be a random variable. A linear
operator TX : CB(R) → CB(R), is said to be Trotter operator and it is defined
by

TXf(t) := Ef(X + t) =
∫

R

f(x + t)dFX(x), t ∈ R, f ∈ CB(R), (3)

where FX is the distribution function of X.
In the sequel, we shall use the following properties of Trotter operator TX

in (3) (we refer the reader to [20], [16], [4], for more details).

1. The operator TX is a linear positive ”contraction” operator, i.e.,

‖ TXf ‖≤‖ f ‖,
for each f ∈ CB(R).

2. The operators TX1 and TX2 commute.

3. The equation TXf(t) = TY f(t) for f ∈ CB(R), t ∈ R, provided that X
and Y are identically distributed random variables.

4. If X1, X2, . . . , Xn are independent random variables, then for f ∈ CB(R)

TX1+...+Xn(f) = TX1 . . . TXn(f).

5. Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are independent random
variables (in each group) and they are independent. Then for each f ∈
CB(R)

‖TX1+...+Xn(f) − TY1+...+Yn(f)‖ ≤
n∑

i=1

‖TXi(f) − TYi(f)‖.

Furthermore, for two independent random variables X and Y, for each
f ∈ CB(R) and n = 1, 2, . . .

‖ Tn
X(f) − Tn

Y (f) ‖≤ n ‖ TX(f) − TY (t) ‖ .

6. Suppose that X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, are independent random
variables (in each group) and they are independent. Moreover, assume
that N1, N2, . . . , Nn, . . . are positive integer-valued random variables in-
dependent of all Xj and Yj , j = 1, 2, . . . . Then, for each f ∈ CB(R)

‖TX1+...+XNn
(f)−TY1+...+YNn

(f)‖ ≤
∞∑

n=1

P (Nn = n)
n∑

i=1

‖TXi(f)−TYi (f)‖.
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7. If
lim

n→∞ ‖ TXn(f) − TX(f) ‖= 0, ∀f ∈ Cr
B(R), r ∈ N,

then Xn
d−→ X as n → ∞.

It is to be noticed that during the last several decades the operator method
has risen to become one of the important most tools available for studying with
certain types of large scale problems as limit theorems for independent random
variables. And Trotter (1959, [20]) was one of mathematicians who succeeded
in using the operator-method in order to get elementary proofs in central limit
theorem for sums of independent random variables. The Trotter’s idea have
been used in many areas of probability theory and related fields. For a deeper
discussion of Trotter- operator method we refer the reader to [20], [16], [4], [5],
[6], [17], [18], [7].

Before stating the main results we first need to recall the definition of the
modulus of continuity and Lipschitz classes.

Definition 2.2. ( [4], [5]) For any f ∈ CB(R), the modulus of continuity with
δ > 0, is defined by

ω(f, δ) = sup
|h|≤δ

{|f(t + h) − f(t)|, t ∈ R}. (4)

We shall need in the sequel some properties of the modulus of continuity
ω(f, δ) from (4).

1. The modulus of continuity ω(f, δ) is a monotone decreasing function of
δ with ω(f, δ) → 0 for δ → 0+.

2. For t ≥ 0, we have ω(f, tδ) ≤ (1 + t)ω(f, δ).

The detailed proofs of the properties of the modulus of continuity can be found
in [4] and [5].

Definition 2.3. ( [4], [5]) A function f ∈ CB(R), is said to satisfy a Lipschitz
condition of order α, 0 < α ≤ 1, in symbols f ∈ Lip(α) if

ω(f ; δ) = O(δα). (5)

It is obvious that f
′ ∈ CB(R) implies f ∈ Lip(1).

The proofs of some limit theorems in this article base upon the Taylor series
expansion for every function f ∈ Cr

B(R)

f(x + y) =
r∑

j=0

xjf(j)(y)
j!

+
xr

(r − 1)!

(
f(r)(η) − f(r)(y)

)
, (6)

where | η − y |≤ x.
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3 Main Results

In the remaining part of this paper, we will investigate some limit theorems
for geometric sums of a row-wise triangular array independent identically dis-
tributed random variables. The received results in this part confirmed that the
convergence rate in Renyi-type limit theorems for geometric sums (see [13] for
more details) could be established by Trotter-operator method, too. The fol-
lowing lemma states one of the most important properties of random geometric
sums.

Lemma 3.1. Let (Xnj , j = 1, 2, . . . , n; n = 1, 2, . . .) be a row-wise triangular
array of independent, exponential distributed random variables with positive
parameter p. Moreover, let Nq , q ∈ (0, 1) be a geometric random variable with
parameter q, q ∈ (0, 1), and independent of all Xnj, j = 1, 2, . . . , n; n = 1, 2, . . . .
Then, for n = 1, 2, . . . , the geometric sum SNq = Xn1 + Xn2 + . . . + XnNq is a
exponential random variable with parameter pq.

Proof. By an argument analogous to the Theorem 2.3 ( [11], page 121), let us
denote by g(t) = qt

1−(1−q)t
the generating function of Nq and by ϕ(t) = p

p−it
the

characteristic function of Xnj , respectively. Then, the characteristic function
of random sum SNq is defined by

Ψ(t) = g(ϕ(t)) =
pq

pq − it
.

Thus, SNq ∼ Exp(pq). The proof is straight-forward. �
The following theorems will strongly confirm the simplicity of Trotter-

operator method in studies of Renyi-type limit theorem for row-wise triangular
array of independent identically distributed random variables.

Theorem 3.1. Let (Xnj , j = 1, 2, . . . , n; n = 1, 2, . . .) be a row-wise triangular
array of non-negative independent identically distributed random variables with
mean 0 < E(Xnj) = m, j = 1, 2, . . . , n; n = 1, 2, . . . . Let Nq be a geometric
random variable with parameter q, q ∈ (0, 1). Then,

qSNq

d−→ Z(m), as q → 0+, (7)

where SNq = Xn1 + Xn2 + . . . + XnNq , for n = 1, 2, . . . and Z(m) is a
exponential distributed random variable with positive mean E(Z(m)) = m. Note
that S0 = 0 by convention.

Proof. Let Z
(m)
1 , Z

(m)
2 , . . . be a sequence of independent exponential distributed

random variables with common mean m, i.e. Z
(m)
j ∼ Exp( 1

m
). Moreover, let

Nq , q ∈ (0, 1) be a geometric distributed random variable with parameter q.
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According to Lemma 3.1 we conclude that the geometric sum
∑Nq

j=1 Z
(m)
j is

belong to exponential law with parameter 1
mq , i.e.

∑Nq

j=1 Z
(m)
j ∼ Exp( 1

mq ).
Thus, our proof starts with the observation that, for an exponential dis-

tributed random variable with positive parameter 1
m

, denoted by Zm, we have

Z(m) d= q

Nq∑
j=1

Z
(m)
j . (8)

Note that the random variable Z(m) is defined in (8) can also be called
a geometric infinitely divisible (GID) random variable (see [1], for definition
of GID). Based on properties of Trotter’s operator, the Theorem 3.1 will be
proved if

‖ TqSNq
f − TZ(m)f ‖= o(1), as q → 0+, (9)

for f ∈ C1
B(R). Using the inequalities concerning with Trotter’s operator, for

f ∈ C1
B(R),

‖ TqSNq
f − TZ(m)f ‖ ≤

∞∑
n=1

P (Nn = n)n ‖ TqXn1f − T
qZ

(m)
1

f ‖

≤ E(Nq) ‖ TqXn1f − T
qZ

(m)
1

f ‖= 1
q
‖ TqXn1f − T

qZ
(m)
1

f ‖ .

(10)

Since f ∈ C1
B(R), one has by the Taylor series expansion

f(x + y) = f(y) + xf
′
(y) + x[f

′
(η) − f

′
(y)], (11)

where | η − y |≤ x.
Then, applying the Trotter operator to function f ∈ C1

B(R) in (11), this
yields

TqXn1f(y) = E(f(qXn1 + y)) =
∫ +∞

0

f(qx + y)dFXn1 (x)

= f(y) + qf
′
(y)
∫ +∞

0

xdFXn1(x) + q

∫ +∞

0

x[f
′
(η1) − f

′
(y)]dFXn1 (x)

= f(y) + qmf
′
(y) + q

∫ +∞

0

x[f
′
(η1) − f

′
(y)]dFXn1 (x),

(12)

where | η1 − y |< q | x | .
In the same way we get

T
qZ

(m)
1

f(y) = E
(
f(qZ(m)

1 + y)
)

= f(y) + qmf
′
(y) + q

∫ +∞

0

x[f
′
(η2) − f

′
(y)]dF

Z
(m)
1

(x),
(13)
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where | η2 − y |< q | x | .
Then, applying (12) with (13) we have

| TqXn1f(y) − T
qZ

(m)
1

f(y) |

≤ q

∫ +∞

0

x | f
′
(η1) − f

′
(y) | dFXn1(x) + q

∫ +∞

0

x | f
′
(η2) − f

′
(y) | dF

Z
(m)
1

(x)

≤ q

∫ δ
q

0

x | f
′
(η1) − f

′
(y) | dFXn1(x) + q

∫ +∞

δ
q

x | f
′
(η1) − f

′
(y) | dFXn1(x)

+ q

∫ δ
q

0

x | f
′
(η2) − f

′
(y) | dFXn1(x) + q

∫ +∞

δ
q

x | f
′
(η2) − f

′
(y) | dFXn1(x)

≤ qε

∫ δ
q

0

xdFXn1(x) + q

∫ +∞

δ
q

x | f
′
(η1) − f

′
(y) | dFXn1(x)+

+ qε

∫ δ
q

0

xdF
(m)
Z1

(x) + q

∫ +∞

δ
q

x | f
′
(η2) − f

′
(y) | dF

Z
(m)
1

(x)

≤ mqε + 2q ‖ f
′ ‖
∫ +∞

δ
q

xdFXn1(x) + mqε + 2q ‖ f
′ ‖
∫ +∞

δ
q

xdF
Z

(m)
1

(x).

(14)

Note that in order to estimate the integrals above we used fact that since
f ∈ C1

B(R), to each ε > 0 there exists δ > 0, such that if | ξ − y |< q
x < δ,

implies | f
′
(ξ) − f

′
(y) |< ε and | f

′
(ξ) − f

′
(y) |< 2 ‖ f

′ ‖, for all | ξ − y |> q
x
.

We then infer that, for f ∈ C1
B(R),

‖ TqXn1f − T
qZ

(m)
1

f ‖≤ 2qmε + 2q ‖ f
′ ‖
(∫ +∞

δ
q

xdFXn1(x) +
∫ +∞

δ
q

xdF
Z

(m)
1

(x)

)
,

(15)
and it follows that , for f ∈ C1

B(R),

‖ TqSNq
f − TZ(m) ‖ ≤ 1

q
‖ TqXn1f − T

qZ
(m)
1

‖

≤ 2mε + 2 ‖ f
′ ‖
(∫ +∞

δ
q

xdFXn1(x) +
∫ +∞

δ
q

xdF
Z

(m)
1

(x)

)
.

(16)

Hence, on account of finiteness of E(Xnj), j = 1, 2, . . . , n; n = 1, 2, . . . and
E(Z(m)

1 ), we obtain

‖ TqSNq
f − TZ(m)f ‖= o(1) as q → 0+.

The proof is complete. �
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Theorem 3.2. Let (Xnj , j = 1, 2, . . . , n; n = 1, 2, . . .) be a row-wise triangular
array of non-negative independent identically distributed random variables with
mean E(| Xn1 |k) < +∞, n = 1, 2, . . . , k = 1, 2, . . . , r; r = 1, 2, . . . . Let Nq be a
geometric random variable with parameter q, q ∈ (0, 1). Moreover, assume that

E| Xn1 |k = E| Z
(m)
1 |k, k = 1, 2, . . . , r; r = 1, 2, . . . . (17)

Then, for f ∈ Cr
B(R)

‖ TqSNq
f − TZ(m) ‖= o(qr−1), as q → 0+. (18)

Proof. Since f ∈ Cr
B(R) one has the Taylor series expansion up to r order. This

yields, by virtue of assumption (17) and based upon the properties of Trotter’
operator

‖TqSNq
f − TZ(m) ‖

≤ E(Nq) ‖TqXn1f − T
Z

(m)
1

f(x) ‖≤qr−1

r!

∫ +∞

0

| x |r|f(r)(η) − f(y)|dFXn1 (x)

+
qr−1

r!

∫ +∞

0

| x |r | f(r)(η) − f(y) | dF
Z

(m)
1

(x)

≤ qr−1

r!

∫ δ
q

0

| x |r | f(r)(η) − f(y) | dFXn1(x)

+
qr−1

r!

∫ +∞

δ
q

| x |r | f(r)(η) − f(y) | dFXn1(x)

+
qr−1

r!

∫ δ
q

0

| x |r | f(r)(η) − f(y) | dF
Z

(m)
1

(x)

+
qr−1

r!

∫ +∞

δ
q

| x |r | f(r)(η) − f(y) | dF
Z

(m)
1

(x),

(19)

where δ > 0, such that | η − y |< q | x |< δ. Since f ∈ Cr
B(R), ∀ε > 0∃δ > 0,

such that | f(r)(η2)− f(r)(y) |< ε if x < δ
q

and | f(r)(η2)− f(r)(y) |< 2 ‖ f(r) ‖
if x > δ

q . Then, from inequalities of (19) we deduce that

‖ TqSNq
f − TZ(m) ‖ ≤ qr−1

r!

(
2εE| Xn1 |r + 2εE| Z

(m)
1 |r + 2 ‖ fr ‖ MX,r(q)

+2 ‖ fr ‖ MZ(m),r(q)
)
,

(20)

where
MX,r(q) =

∫+∞
δ
q

| x |rdFXn1(x) → 0 and MZ(m),r(q) =
∫ +∞

δ
q

| x |rdF
Z

(m)
1

(x) →
0 as q → 0 on account of finiteness of r-th absolute moments E| Xn1 |r and
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E| Xn1 |r. Then, it is follows that

‖ TqSNq
f − TZ(m) ‖= o

(
qr−1

)
as q → 0+.

This completes the proof. �

Theorem 3.3. Let (Xnj , j = 1, 2, . . . , n; n = 1, 2, . . .) be a row-wise triangular
array of non-negative valued, independent and identically distributed random
variables with mean E(Xn1) = m < +∞ and finite variance 0 < D(Xn1) =
σ2 < +∞, j = 1, 2, . . . , n; n = 1, 2, . . . . Moreover, let Nq , q ∈ (0, 1) be a geomet-
ric variable with parameter q, q ∈ (0, 1), and suppose that Nq is independent of
all Xnj, j = 1, 2, . . . , n; n = 1, 2, . . . . Then, for every f ∈ C1

B(R),

‖ TqSNq
f − TZ(m)f ‖≤ 2ω(f

′
; q)
(

m +
1
2
σ2 + m2

)
. (21)

In particular, suppose that f
′ ∈ Lip(α, M), 0 < α ≤ 1, 0 < M < +∞. Then

‖ TqSNq
f − TZ(m)f ‖≤ 2

(
m +

1
2
σ2 + m2

)
Mqα. (22)

Proof. By an argument analogous to that used for the proof of Theorem 3.2,
with consideration of inequalities of Trotter operator

‖ TqSNq
f − TZ(m)f ‖≤ E(Nq) ‖ TqXn1f − T

Z
(m)
1

f ‖= 1
q
‖ TqXn1f − T

Z
(m)
1

f ‖ .

Applying the operator TqXn1 to function f ∈ C1
B(R), with the Taylor series

expansion, this yields

TqXn1f(y) =
∫ +∞

0

f(qx + y)dFXn1 (x)

= f(y) + qf
′
∫ +∞

0

xdFXn1(x) + q

∫ +∞

0

x[f
′
(η3) − f

′
(y)]dFXn1 (x)

= f(y) + qmf
′
(y) + q

∫ +∞

0

x[f
′
(η3) − f

′
(y)]dFXn1 (x),

(23)

where | η3 − y |< qx. Analogously, applying the operator T
qZ

(m)
1

to function
f ∈ C1

B(R), with the Taylor series expansion, we have

T
qZ

(m)
1

f(y) = f(y) + qmf
′
(y) + q

∫ +∞

0

x[f
′
(η4) − f

′
(y)]dFXn1(x), (24)
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where | η4 − y |< qx. Thus, combining both equations (23) and (24), using the
properties of modulus of continuity, we get

| TqXn1f(y) − T
qZ

(m)
1

f(y) |

≤ q

∫ +∞

0

x | f
′
(η4) − f

′
(y) | dFXn1(x) + q

∫ +∞

0

x | f
′
(η4) − f

′
(y) | dF

Z
(m)
1

(x)

≤ q[ω(f
′
; q)
∫ +∞

0

x(1 + x)dF
Z

(m)
1

(x) + ω(f
′
; q)
∫ +∞

0

x(1 + x)dFXn1(x)]

≤ 2qω(f
′
; q)
(

m +
1
2
σ2 + m2

)
.

(25)

We then have the desired estimation

‖ TqSNq
f − TZ(m)f ‖ ≤ 1

q
‖ TqXn1f − T

Z
(m)
1

f ‖

≤ 2ω(f
′
; q)
(

m +
1
2
σ2 + m2

)
.

(26)

Finally, for f
′ ∈ Lip(α), we have

‖ TqSNq
f − TZ(m)f ‖≤ 2

(
m +

1
2
σ2 + m2

)
Mqα.

This completes the proof. �

Theorem 3.4. Let (Xnj , j = 1, 2, . . . , n; n = 1, 2, . . .) be a row-wise triangular
array of non-negative valued, independent and identically distributed random
variables with finite r-th absolute moment E(| Xnj |r) < +∞, j = 1, 2, . . . ; r ≥
1. Let Nq , q ∈ (0, 1) be a geometric variable with parameter q, q ∈ (0, 1), and
suppose that Nq is independent of all Xnj, j = 1, 2, . . . , n; n = 1, 2, . . . . More-
over, assume that

E(| Xnj |r) = E(| Z
(m)
j |r); r ≥ 1. (27)

Then, for every f ∈ Cr−1
B (R),

‖ TqSNq
f − TZ(m)f ‖≤ 2qr−1

(r − 1)!
ω(f(r−1); q)

(
mr−1(r − 1)! + mrr!

)
, (28)

where Z
(m)
j are independent exponential distributed random variables with com-

mon mean m, i.e. Z
(m)
j ∼ Exp( 1

m), j = 1, 2, . . .
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Proof. Our proof starts with the observation that

Z(m) d= q

Nq∑
j=1

Z
(m)
j .

and the Taylor series expansion for every f ∈ Cr−1
B (R)

f(x + y) =
r−1∑
j=0

f(j)(y)xj

j!
+

1
(r − 1)!

xr
(
f(r−1)(η5) − f(y)

)
,

where | η5 − y |<| x | . Then, on account of assumption (27) and based on the
properties of Trotter’s operator, we have

‖TqSNq
f − TZ(m)f ‖≤ E(Nq) ‖ TqXn1f(y) − T

qZ
(m)
j

f(y) ‖

≤ 1
q
‖ TqXn1f(y) − T

qZ
(m)
j

f(y) ‖

≤ qr−1

(r − 1)!

∫ +∞

0

| x |r−1 | f(r−1)(η5 − f(r−1)(y)) | dFXn1(x)

+
qr−1

(r − 1)!

∫ +∞

0

| x |r−1 | f(r−1)(η5 − f(r−1)(y)) | dF
Z

(m)
1

(x)

≤ qr−1

(r − 1)!
ω(f(r−1); q)

∫ +∞

0

| x |r−1(1+ | x |)dFXn1(x)

+
qr−1

(r − 1)!
ω(f(r−1); q)

∫ +∞

0

| x |r−1(1+ | x |)dF
Z

(m)
1

(x)

≤ 2qr−1

(r − 1)!
ω(f(r−1); q)

(∫ +∞

0

xr−1dF
Z

(m)
1

(x) +
∫ +∞

0

xr−1dF
Z

(m)
1

(x)
)

≤ 2qr−1

(r − 1)!
ω(f(r−1); q)

(
mr−1(r − 1)! + mrr!

)
.

(29)

Thus, this completes the proof. �

Theorem 3.5. Let (Xnj , j = 1, 2, . . . , n; n = 1, 2, . . .) be a row-wise triangu-
lar array of non-negative valued, independent and standard normal distributed
random variables. Let Nq, q ∈ (0, 1) be a geometric variable with parameter q,
p ∈ (0, 1), and suppose that Nq is independent of all Xnj, j = 1, 2, . . . , n; n =
1, 2, . . . . Then, for every f ∈ C2

B(R),

‖ TqS2
Nq

f − TZ(1)f ‖≤ q

2
‖ f

′′ ‖
(
1 + 24ω(f

′′
; q
)

, (30)

where S2
Nq

= X2
n1 + X2

n2 + . . . + X2
nNq

and Z(1) ∼ Exp(1).
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Proof. We first observe that, for a exponential distributed random variable Z1,
we have

Z(1) d= q

Nq∑
j=1

Z
(1)
j . (31)

Thus, based on properties of Trotter operator, we have

‖ TqS2
Nq

f − TZ(1)f ‖ ≤ E(Nq) ‖ TqX2
n1

f − T
qZ

(1)
1

‖

=
1
q
‖ TqX2

n1
f − T

qZ
(1)
1

‖,
(32)

for every f ∈ C2
B(R). Then, based on the Trotter operator, for every function

f ∈ C2
B(R) with the Taylor expansion, we have

TqX2
n1

f(y) =
∫ +∞

0

f(qx + y)dFX2
n1

(x)

= f(y) + qy
′
∫ +∞

0

xdFX2
n1

(x) +
q2

2
f

′′
(y)
∫ +∞

0

x2dFX2
n1

(x)

+
q2

2
f

′′
(y)
∫ +∞

0

x2
(
f

′′
(η9) − f

′′
(y)
)

dFX2
n1

(x)

= f(y) + qy
′
+

3q2

2
f

′′
(y) +

q2

2
f

′′
(y)
∫ +∞

0

x2
(
f

′′
(η6) − f

′′
(y)
)

dFX2
n1

(x),

(33)

where | η6 − y |< q | x | . By an argument analogous to the previous one, we
get

T
qZ

(1)
1

f(y) =
∫ +∞

0

f(qx + y)dF
Z

(1)
1

(x)

= f(y) + qy
′
+ q2f

′′
(y) +

q2

2
f

′′
(y)
∫ +∞

0

x2
(
f

′′
(η7) − f

′′
(y)
)

dF
Z

(1)
1

(x),
(34)
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where | η7 − y |< q | x | . Combining (33) with (34) yields

| TqX2
n1

f(y) − T
qZ

(1)
1

f(y) |

≤ q2

2
‖ f

′′ ‖ +
q2

2
‖ f

′′ ‖
∫ +∞

0

x2ω(f
′′
; qx)dFX2

n1
(x)

+
q2

2
‖ f

′′ ‖
∫ +∞

0

x2ω(f
′′
; qx)dF

Z
(1)
1

(x)

≤ q2

2
‖ f

′′ ‖ (1 + ω(f
′′
; q)
∫ +∞

0

x2(1 + x)dFX2
n1

(x)

+
q2

2
‖ f

′′ ‖ (1 + ω(f
′′
; q)
∫ +∞

0

x2(1 + x)dF
Z

(1)
1

(x)

≤ q2

2
‖ f

′′ ‖
(

1 + ω(f
′′
; q)
[
9 + 8

Γ(3 + 1
2)

Γ(1
2 )

])
,

where Γ(k) =
∫ +∞
0 e−xxk−1dx, (k ≥ 1), denotes the Gamma function with

some particular values such thatΓ(1
2) =

√
π, Γ(7

2) = 15
8

√
π. Then, using the

computations of the Gamma function, it follows that

‖ TqS2
Nq

f − TZ(1)f ‖≤ 1
q
‖ TqS2

Nq
f − T

Z
(1)
1

f ‖

≤ q

2
‖ f

′′ ‖
(

1 + ω(f
′′
; q)
[
9 + 8

Γ(3 + 1
2)

Γ(1
2 )

])

≤ q

2
‖ f

′′ ‖
(
1 + 24ω(f

′′
; q)
)

.

This completes the proof. �
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