
Southeast Asian Journal of Sciences, Vol. 11, No 2 (2025), pp. 67-73

INITIAL STUDY ON TRUST

COMPUTATION BASED ON TENSOR AND

LIE ALGEBRA IN COMPLEX NETWORKS

Dinh Que Tran

Department of Information Technology
Posts and Telecommunications Institute of Technology (PTIT)

Hanoi, Vietnam
E-mail: quetd@ptit.edu.vn

Abstract

Trust computation in complex networks is a crucial topic for systems
involving interactions among agents, such as recommendation platforms,
multi-agent systems, and social networks. This paper presents a novel
framework combining tensor-based feature modeling and Lie algebraic
dynamics to formally define and compute trust. We model measures
such as dispatch, familiarity, responsibility, and influence in tensor form
and propose a trust function based on weighted features. We then use Lie
algebra to encode the structural evolution of trust over time and derive
key mathematical properties. This approach enables robust and dynamic
trust inference in large-scale and evolving networks.

1 Introduction

In complex networks, trust is a dynamic and relational concept that reflects the
confidence of one node (agent) in the behavior of another. Traditional models
often rely on static features or heuristics, limiting their adaptability and scal-
ability [1, 3, 4, 5, 6, 7, 8, 9]. Recent advances suggest that multi-dimensional

Key words: complex networks, trust model, belief, trusworthiness.
2010 AMS Mathematics classification: 911D30, 91D10, 68U115, 68U35, 68M14, 68M115,
68T99.

67



68 Initial Study on Trust Computation based on Tensor and Lie Algebra

representations and geometric approaches can significantly enhance trust mod-
eling. This work leverages tensors to encode trust-relevant features and Lie
algebra [12, 10, 11, 13, 14] to model structural and temporal evolution. This
paper is an extension of our research work [2]. Our contributions include:

• A multi-dimensional tensor representation for trust features in networks.

• A formal trust definition based on weighted aggregation and conditions.

• An application of Lie algebra to model trust propagation and network
evolution.

• Theoretical results including definitions, propositions, and brief proofs.

2 Formal Trust Definition and Verified Func-
tion Classes

2.1 General Definition in Tensor Form

Let T ∈ [0, 1]n×n×d be a 3-way trust tensor, where Ti,j,: = x(i, j) ∈ [0, 1]d de-
notes the normalized feature vector characterizing the trust-related interaction
from node i (trustor) to node j (trustee). Each slice x(i, j) includes d normal-
ized factors such as familiarity, responsibility, dispatching efficiency, influence,
etc.

Definition 1 (Trust Function in Tensor Space). A trust function is a mapping

Ftrust : [0, 1]d → [0, 1], with Ftrust(Ti,j,:) = trust(i, j),

that satisfies the following conditions:

(C1) Boundedness: For all x ∈ [0, 1]d, we have Ftrust(x) ∈ [0, 1].

(C2) Continuity: The function Ftrust is continuous on [0, 1]d.

(C3) Differentiability: Ftrust is continuously differentiable on the open unit
cube (0, 1)d, i.e., Ftrust ∈ C1((0, 1)d).

(C4) Monotonicity (Optional): If a feature xk positively contributes to
trust, then

∂Ftrust

∂xk
(x) ≥ 0 for all x ∈ (0, 1)d.

This tensor-based formulation enables generalized trust modeling in multi-
relational networks. It is particularly suitable for integration with deep learning
models (e.g., tensorized neural architectures), differentiable optimization, and
advanced trust propagation mechanisms across heterogeneous graph data.



Dinh Que Tran 69

2.2 Verified Classes of Trust Functions

Proposition 1 (Linear Weighted Sum Trust Function). Let w ∈ Rd with

wk ≥ 0 and
∑d
k=1 wk = 1, and define:

Ftrust(x) = σ

(
d∑
k=1

wkxk

)
, where σ(z) =

1

1 + e−z
.

Then Ftrust satisfies conditions (C1)–(C4).

Proof. The sigmoid function maps R into (0, 1), ensuring (C1). The composi-
tion of a linear map and sigmoid is continuous (C2) and continuously differen-
tiable (C3). Since σ′(z) > 0 and wk ≥ 0, we have

∂Ftrust

∂xk
= σ′

(∑
wkxk

)
wk ≥ 0,

verifying (C4). �

Proposition 2 (Nonlinear Squashed Function). Let f : [0, 1]d → R be a dif-
ferentiable nonlinear function (e.g., a polynomial), and let φ : R → [0, 1] be a
differentiable squashing function (e.g., sigmoid or scaled tanh). Define:

Ftrust(x) = φ(f(x)).

Then Ftrust satisfies (C1)–(C3). Monotonicity (C4) holds if f is monotonic in
each xk.

Proof. Since both f and φ are differentiable, their composition is continuously
differentiable (C3). The output of φ lies in [0, 1] (C1), and both functions are
continuous (C2). The derivative is given by:

∂Ftrust

∂xk
= φ′(f(x)) · ∂f

∂xk
,

which is non-negative if φ′ and ∂f
∂xk

are non-negative, satisfying (C4). �

Proposition 3 (Probabilistic Trust Model). Let θi,j ∈ {0, 1} be a latent binary
trustworthiness variable, and define:

Ftrust(x) = P(θi,j = 1 | x),

modeled using differentiable logistic regression:

P(θi,j = 1 | x) = σ(w>x + b).

Then Ftrust satisfies (C1)–(C4).



70 Initial Study on Trust Computation based on Tensor and Lie Algebra

Proof. The sigmoid output lies in (0, 1) (C1). The function is smooth and
differentiable (C2–C3). The partial derivative is:

∂Ftrust

∂xk
= σ′(w>x + b)wk ≥ 0,

assuming wk ≥ 0, so monotonicity (C4) is satisfied. �

Proposition 4 (Neural Network Trust Function). Let Ftrust(x) = NNθ(x)1

be a neural network with differentiable activation functions The neural network
has learned to map patterns in the input data to predicted trust scores. (e.g.,
ReLU, sigmoid, tanh), and a final sigmoid output layer. Then Ftrust satisfies
(C1)–(C3), and optionally (C4).

Proof. The final sigmoid ensures bounded output in (0, 1) (C1). The compo-
sition of differentiable functions ensures (C2)–(C3). Monotonicity (C4) can
be achieved via constraints, monotonic architectures, or post-hoc analysis of
∇Ftrust. �

Proposition 5 (Hybrid Rule-Based Trust Function). Let Ftrust(x) = RuleSet(x)·
NNθ(x), where RuleSet is piecewise differentiable with values in [0, 1], and NNθ

is a differentiable neural network as above. Then Ftrust satisfies (C1)–(C3).
(C4) depends on both components.

Proof. Both components are bounded in [0, 1], so the product is also bounded
(C1). If RuleSet and NNθ are differentiable almost everywhere, the product
is differentiable almost everywhere (C3), and continuous (C2). Monotonicity
(C4) depends on whether both components are non-decreasing in xk. �

2.3 Discussion

By enforcing continuous differentiability, this framework guarantees that trust
functions can be smoothly integrated into neural architectures, dynamic equa-
tions, and optimization problems. Depending on application needs, trust mod-
els may emphasize simplicity (linear), expressivity (neural), interpretability
(rules), or uncertainty modeling (probabilistic).

3 Lie Algebra for Trust Computing

3.1 Lie Algebra Background

Definition 2 (Lie Algebra). Let g be a vector space over R equipped with a
bilinear map [·, ·] : g × g → g called the Lie bracket. Then (g, [·, ·]) is a Lie
algebra if the following axioms hold for all X,Y, Z ∈ g:

1This refers to a neural network (NN) parameterized by weights θ which takes x as input
and produces a trust value as output.



Dinh Que Tran 71

(L1) Bilinearity: [aX + bY, Z] = a[X,Z] + b[Y,Z] for all a, b ∈ R.

(L2) Antisymmetry: [X,Y ] = −[Y,X].

(L3) Jacobi Identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

In trust modeling, g is a space of generators describing system dynamics or
structural interactions between agents, and G(t) ∈ Lie(G) is a trust transition
matrix at time t.

3.2 Trust Modeling via Lie Generator

Let G(t) ∈ Rn×n represent the trust propagation matrix over time t, and define
the generator of the trust evolution as:

g(t) =
dG(t)

dt
G(t)−1.

This yields:
G(t) = exp(tg)G(0),

where g ∈ Rn×n is the Lie algebra generator encoding structural and relational
dynamics.

Define trust between node i and node j at time t as:

FLie
trust(i, j, t) = σ ([G(t)]ij) , σ(z) =

1

1 + e−z
.

3.3 Propositions

Proposition 6 (Lie Algebra Trust Function Satisfies Trust Definition). Let
G(t) = exp(tg)G(0) with bounded initial trust matrix G(0) ∈ [0, 1]n×n and Lie
generator g such that G(t)ij ∈ R is continuous in t. Then the function

FLie
trust(i, j, t) = σ(G(t)ij)

satisfies (C1)–(C3) in Definition 1.

Proof. Since G(t) is differentiable in t by the matrix exponential of a fixed
generator, G(t)ij is smooth and thus continuous (C2) and differentiable (C3).
The sigmoid function maps R→ (0, 1), hence the composed function is bounded
(C1). �

Proposition 7 (Feature-Dependent Lie Generator Trust Model). Let x(i, j) ∈
[0, 1]d be a feature vector, and define the Lie generator as:

gi,j =

d∑
k=1

wkxk(i, j)Ak, with Ak ∈ Rn×n, wk ≥ 0,



72 Initial Study on Trust Computation based on Tensor and Lie Algebra

where Ak are structural basis matrices (e.g., dispatch, response, influence).
Then the trust function:

FLie
trust(i, j) = σ

(
[exp(gi,j)]ij

)
satisfies conditions (C1)–(C4).

Proof. Each Ak is fixed, and gi,j is a linear combination of x(i, j) with non-
negative weights, hence differentiable in x. The matrix exponential is differen-
tiable with respect to gi,j , and thus the map x 7→ [exp(gi,j)]ij is differentiable.
Composition with sigmoid yields bounded output (C1), continuity (C2), and
differentiability (C3). Since wk ≥ 0 and exp preserves monotonicity in this
construction, partial derivatives are non-negative if all Ak influence trust pos-
itively, satisfying (C4). �

4 Conclusion

This paper proposes a model of computing trust in complex networks based on
tensors of features collected from nodes (agents) interaction and influence. A
class of functions of trust computation on tensors are constructed . The Lie
algebra framework introduces a principled way to integrate continuous-time
structural dynamics into trust modeling. The matrix exponential guarantees
smooth propagation and compatibility with neural network integration. When
the generator is defined in terms of input features, it naturally aligns with the
formal trust function definition and remains fully differentiable for gradient-
based optimization.

References

[1] Wanita Sherchan, Surya Nepal, and Cecile Paris, A Survey of Trust in
Social Networks, ACM Computing Surveys, vol. 45(4), Article 47, August
2013.

[2] Dinh Que Tran, Phuong Thanh Pham, TreeXTrust: A Tree-Based Ex-
plainable Trust Model Using Social Semantics and Influence, Journal of
Computer Science, AGH University of Science and Technology, 26(2), pp.
1–25, 2025.

[3] Matheus R. F. Mendonca, Andre M. S. Barreto, and Artur Ziviani, Ap-
proximating Network Centrality Measures Using Node Embedding and
Machine Learning, arXiv preprint arXiv:2006.16392, 2020.

[4] J. Tang et al., Social Influence Analysis in Large-scale Networks, KDD’09,
June 28, 2009.



Dinh Que Tran 73

[5] Bingoi et al., Topic-Based Influence Computation in Social Networks under
Resource Constraints, IEEE Transactions on Services Computing, vol. PP,
no. 99, 2018.

[6] Kan Li et al., Social Influence Analysis: Models, Methods, and Evaluation,
Engineering, vol. 4, 2018, pp. 40–46.

[7] Dinh Que Tran and Phuong Thanh Pham, Integrating Interaction and
Similarity Threshold of User’s Interests for Topic Trust Computation,
Southeast-Asian J. of Sciences, vol. 7(01), 2019, pp. 28–35.

[8] Vedran Podobnik et al., How to Calculate Trust Between Social Net-
work Users?, SoftCOM 2012 – 20th International Conference on Software,
Telecommunications and Computer Networks, IEEE, pp. 1–6.

[9] Chung-Wei Hang et al., Operators for Propagating Trust and Their Eval-
uation in Social Networks, AAMAS, 2009.

[10] Zheng Du, Min-Hung Chen, and Yung-Hsiang Lu, Tensor-based Trust
Evaluation with Lie Algebra for Dynamic Networks, Journal of Computer
Science and Systems, vol. 19(3), 2023.

[11] Taco Cohen and Max Welling, Group Equivariant Convolutional Networks,
International Conference on Machine Learning (ICML), 2016.

[12] Alexander Kirillov, Introduction to Lie Groups and Lie Algebras, Cam-
bridge University Press, 2008.

[13] Mei Lu and Fanzhang Li, Survey on Lie Group Machine Learning,
https://www.sciopen.com/article/10.26599/BDMA.2020.9020011, 2020.

[14] Sheng Zhang, Hang Su, and Jun Zhu, Learning Graphical Lie Algebra with
Deep Structured Embedding, Advances in Neural Information Processing
Systems (NeurIPS), 2018.


