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Abstract

A class of non-autonomous linear second order stochastic differential
equations is investigated by a technique based on mechanical approach.
The system response is separated into the deterministic and random parts
governed by two uncoupled differential equations which can be solved ex-
actly. Mean-square responses of the system are compared with results
obtained by the stochastic averaging method and Monte Carlo simula-
tion.

1 Introduction

It is noted that no real system is exactly linear. Because the treatment of non-
linear equations, however, is a good deal more complicated than the treatment
of linear ones, many engineering systems can be modeled, to a first approxi-
mation, in terms of linear differential equations of motion, if the amplitude of
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motion is relatively small. The adoption of a linear model, however, is a quite
desirable step in the analysis of any particular system under investigation. In
this paper, we use linear second order stochastic differential equations to il-
lustrate a mechanically approximate approach although such equations were
studied in detail by many authors (e.g. see [1,2], and their earlier references).
The purpose of the present paper is to apply a technique used in vibration
analysis [3], which was first used to study the stochastic Duffing’s equation,
to find the exact solution of a non-autonomous linear second order stochas-
tic differential equation. The concept of the technique comes from works of
Caughey [4] and Piszczek [5], but in general form. The mean-square response
of the system is compared with the numerical result obtained by the method of
stochastic averaging and Monte Carlo simulation. The accuracy and reliabil-
ity of the approach is validated by these comparisons. This technique can be
applied to non-linear stochastic differential equations under investigation with
two famous methods: averaging method and equivalent linearization method.
The structure of the paper’s content is as follows. In Section 2, we present a
mechanically analytical technique to the non-autonomous linear second order
stochastic differential equation. Numerical results are in Section 3. And the
final is summary and conclusions.

2 Analytical technique

Let’s consider the non-autonomous linear stochastic differential equation in the
form of

ẍ + ω2x = ε (−2αẋ + P cos νt) +
√

εσξ (t) (1)

where α, P , σ, ω, ν are positive constants, and ξ (t) is a white noise with unit
intensity. To obtain the solution of Eq.(1) in mechanical approach, Eq.(1) is
separated into two different kinds: a deterministic equation and a stochastic
equation which can be solved exactly. To do that, the random response of
Eq.(1) is assumed to include deterministic and random parts which can be
separated completely. Thus, let us introduce two new variables m and u such
that

x (t) = m (t) + u (t) , (2)

where m denotes the mathematical expectation of the response x, u denotes
the random part of the response x which has the expectation to be zero

m = 〈x〉 , 〈u〉 = 0, (3)

where notation 〈.〉 denotes mathematical expectation operator. Substituting
(2) into Eq. (1) yields

(
m̈ + 2εαṁ + ω2m

)
+

(
ü + 2εαu̇ + ω2u

)
= εP cos νt +

√
εσξ (t) . (4)
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By taking mathematical expectation on both sides of Eq. (4) and noting Eq.
(3), one obtains a nonlinear equation for the deterministic part of the response
where the right hand side is a purely periodic excitation with frequency ν

m̈ + 2εαṁ + ω2m = εP cos νt. (5)

Multiply Eq. (5) by -1 and add the obtained result into Eq. (4) to get the
following stochastic differential equation

ü + 2εαu̇ + ω2u =
√

εσξ (t) . (6)

Because Eq. (5) is a linearly damped system under harmonic force, its response
takes the form [9]

m (t) = e−εαt (A cosωdt + B sinωdt)+
εP

(ω2 − ν2)2 + 4ε2α2ν2

[(
ω2 − ν2

)
cosνt + 2εhν sin νt

]
,

(7)

where A, B are constants, ωd =
√

ω2 − (εα)2, 0 < εα
ω < 1. When t gets large

the solution (7) approaches to the following

m (t) =
εP

(ω2 − ν2)2 + 4ε2α2ν2

[(
ω2 − ν2

)
cos νt + 2εαν sin νt

]
. (8)

On the other hand, because Eq. (6) is a autonomous linear stochastic differ-
ential equation, the impulse response function of the response of Eq. (6) takes
the form [10]

h (t) =
1
ωd

e−εαt sin ωdt, t � 0. (9)

According to theory of time domain vibration analysis, the response of Eq. (6)
can be found in the following form

u (t) =
√

εσ

∞∫
−∞

ξ (s)h (t − s) ds (10)

Computing from (10), noting (9), one obtains

〈
u2 (t)

〉
= εσ2

∞∫
−∞

∞∫
−∞

〈ξ (s1) ξ (s2)〉h (t − s1)h (t − s2)ds1ds2

=
εσ2

2ω2
d

(
1

2εα
− 1

2ω2
0

εα

)
+

εσ2

2ω2
d

e−2εαt

{
− 1

2εα
− 1

2ω2
0

[−εα cos (2ωdt) + ωd sin (2ωdt)]

}

=
σ2

(
ω2

0 − ε2α2
)

4ω2
dαω2

0

+
εσ2

2ω2
d

e−2εαt

{
− 1

2εα
− 1

2ω2
0

[−εα cos (2ωdt) + ωd sin (2ωdt)]

}

=
σ2

4αω2
0

+
εσ2

2ω2
d

e−2εαt

{
− 1

2εα
− 1

2ω2
0

[−εα cos (2ωdt) + ωd sin (2ωdt)]

}
(11)
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When t gets large, Eq. (11) gives the mean square of stationary response u as
follows 〈

u2
〉

=
σ2

4ω2h
. (12)

By squaring both sides of (2), then taking mathematical expectation and noting
(3), one obtains the mean square response of Eq. (1) to be

〈
x2 (t)

〉
=

〈
u2 (t)

〉
+

〈
m2 (t)

〉
. (13)

Substituting (8) and (12) into (13), one gets the exact solution of the Eq. (1)
in the form of

〈
x2 (t)

〉
=

σ2

4αω2
+

ε2P 2

2
[
(ω2 − ν2)2 + 4ε2α2ν2

]

+
ε2P 2

[(
ω2 − ν2

)2 − 4ε2α2ν2
]

2
[
(ω2 − ν2)2 + 4ε2α2ν2

]2 cos (2νt)

+
2ε3ναP 2

(
ω2 − ν2

)
[
(ω2 − ν2)2 + 4ε2α2ν2

]2 sin (2νt) . (14)

It is seen from Eq. (14) that the mean square response of Eq. (1) is time
varying.

3 Numerical results

Taking time-averaging Eq. (14) over one period gives

〈〈
x2 (t)

〉〉
t
=

σ2

4αω2
+

ε2P 2

2
[
(ω2 − ν2)2 + 4ε2α2ν2

] (15)

Furthermore, Eq. (1) can be solved by stochastic averaging method in Carte-
sian coordinates (b, d) by the following transformation

x = b cos νt + d sin νt,

ẋ = −bν sin νt + dν cos νt, (16)

where b and d are assumed to be slowly varying random processes. Follow-
ing stochastic averaging method, Eq. (1) is replaced by its averaged version
[6,7] which has the corresponding Fokker-Planck equation, written for station-
ary probability density function W (b, d), solved exactly by the technique of
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auxiliary function [8]. Thus, the exact stationary probability density function
W (b, d) of Eq. (1) takes the form (see [7] for details)

W (b, d) = C exp
{
−2hν2

σ2

(
b2 + d2

)
+

4Phν2

σ2 (4h2ν2 + Δ2)
(Δb + 2hνd)

}
. (17)

Here, Δ = (ω2 − ν2)/ε. By squaring both sides of the first equation in (16)
and then taking mathematical expectation, one obtains〈

x2
av (t)

〉
=

〈
b2

〉
cos2νt +

〈
d2

〉
sin2νt + 〈bd〉 sin 2νt. (18)

Taking averaging Eq. (18) with respect to time yields the following expression

〈〈
x2

av (t)
〉〉

t
=

1
2

(〈
b2

〉
+

〈
d2

〉)
. (19)

Using (17), Eq. (19) is equivalent to

〈〈
x2

av (t)
〉〉

t
=

1
2

∞∫
−∞

∞∫
−∞

(
b2 + d2

)
W (b, d) dbdd. (20)

The above result is employed to check the accuracy of the present technique.
In order to check the accuracy of the present technique, the various values of
response of Eq. (1), denoted by

〈
x2

〉
present

, are compared to the numerical
simulation results, denoted by

〈
x2

〉
sim

, and results obtained by the stochas-
tic averaging method, denoted by

〈
x2

〉
av

, versus the particular parameter.
The numerical simulation of the mean square response is obtained by 10,000-
realization Monte Carlo simulation. In Table 1, time-averaging values of mean-
square response of the system is performed for computation with various values
of the parameter ν in the primary resonant region. The system parameters are
chosen to be ε = 0.02, α = 1, ω = 1, P = 1, σ2 = 1. It is seen that the
stochastic averaging method gives a good prediction only when ν very closes
to the natural frequency of the system. Table 2 presents time-averaging values
of mean-square response of the system evaluated versus the parameter σ2 with
the system parameters chosen to be ε = 0.02, α = 1, ω = 1, ν = 1.01, P = 1.
Table 3 presents time-averaging values of mean-square response of the system
evaluated versus the parameter P with the system parameters: ε = 0.02, α = 1,
ω = 1, ν = 1.01, σ2 = 1. The tables show that the present technique gives a
good prediction. The errors in the tables are defined as

Errav =

∣∣〈x2
〉

sim
− 〈

x2
〉

av

∣∣
〈x2〉sim

× 100%, (21)

Errpresent =

∣∣∣〈x2
〉

sim
− 〈

x2
〉

present

∣∣∣
〈x2〉sim

× 100%. (22)
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Table 1. The error between the simulation result and approximate values
of the averaging with respect to time of mean square response

〈
x2 (t)

〉
versus

the parameter ν (ε = 0.02, α = 1, ω = 1, P = 1, σ2 = 1).

ν
〈
x2

〉
sim

〈
x2

〉
av

Errav (%)
〈
x2

〉
present

Errpresent (%)
1.01 0.3458 0.3433 0.72 0.3482 0.70
1.05 0.2679 0.2431 9.28 0.2663 0.60
1.10 0.2544 0.2110 17.08 0.2543 0.03
1.15 0.2535 0.1909 24.67 0.2519 0.62
1.20 0.2500 0.1746 30.14 0.2510 0.42

Table 2. The error between the simulation result and approximate values
of the averaging with respect to time of mean square response

〈
x2 (t)

〉
versus

the parameter σ2 (ε = 0.02, α = 1, ω = 1, ν = 1.01, P = 1).

σ2
〈
x2

〉
sim

〈
x2

〉
av

Errav (%)
〈
x2

〉
present

Errpresent (%)
0.1 0.1240 0.1227 1.058 0.1232 0.66
0.5 0.2222 0.2208 0.625 0.2232 0.48
1.0 0.3504 0.3433 2.016 0.3482 0.61
2.0 0.6017 0.5884 2.214 0.5982 0.58
5.0 1.3583 1.3236 2.555 1.3482 0.74

Table 3. The error between the simulation result and approximate values
of the averaging with respect to time of mean square response

〈
x2 (t)

〉
versus

the parameter P (ε = 0.02, α = 1, ω = 1, ν = 1.01, σ2 = 1).

P
〈
x2

〉
sim

〈
x2

〉
av

Errav (%)
〈
x2

〉
present

Errpresent (%)
0.1 0.2492 0.2461 1.26 0.2510 0.71
1.0 0.3486 0.3433 1.52 0.3482 0.11
2.0 0.6488 0.6380 1.67 0.6429 0.91
3.0 1.1349 1.1291 0.51 1.1340 0.08
5.0 2.7301 2.7007 1.08 2.7056 0.90

4 Summary and conclusions

In mechanical approach to a non-autonomous linear stochastic differential equa-
tion, the original system is separated into two uncoupled differential equations:
ordinary differential equation and stochastic differential equation, which can
be solved exactly. The mean square responses of the system obtained by the
present technique are validated by numerical simulation results, obtained by
Monte-Carlo simulation, and are compared to results obtained by stochastic
averaging method. This technique to the authors’ knowledge is not mathemat-
ically proved so far. Thus, it needs investigating and modifying further in order
to make it be applicable to various kinds of stochastic differential equations.
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