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Abstract

In this paper, we study European options with Black-Scholes model
in a market with liquidity costs. We prove that delta hedging is still
an optimal strategy. The option price in the presence of liquidity costs
is given by solving a partial differential equation. Then, the applied
implicit finite difference method is showed to be stable. Finally, some
experiments illustrate the efficiency of our method.

1 Introduction

Liquidity risk is typically reflected in price movements: if we buy a larger num-
ber of a security, the average buy price will be higher and if we sell a larger
number of a security the the average sell price will be lower. Then, size of a
trade - trading volume - should be incorporated in price of a security, for exam-
ple, see Jarrow (1992), Back (1993), Cvitanic and Ma (1996), Duffie and Ziegler
(2003), Çetin et al. (2004), and Ku et al. (2012). Among these works, Ku et
al. (2012) developed a discrete hedging with liquidity risk. They derived a par-
tial differential equation for the option value and proposed a hedging strategy
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in discrete time with the presence of liquidity costs. They also proposed the
modified PDE to provide discrete time hedging strategies.

Using the same framework in Ku et al. (2012), we study how the classical
hedging strategies should be modified and how the prices of derivatives should
be changed in a financial market with liquidity costs, especially when we hedge
only at discrete time points. We consider a discrete time version of the Black-
Scholes model and a multiplicative supply curve without assuming that interest
rate is zero. We prove that delta hedging is still an optimal strategy in the
presence of liquidity risks. We also obtain a nonlinear partial differential equa-
tion which requires the expected hedging error converging to zero as number of
hedging time goes to infinity. We provide an approximate method for solving
this equation using a series solution.

The remaining of the paper is organized as follows. Section 2 introduces the
model, and presents the optimal hedging strategy and a pricing PDE. Section
3 studies an analytic solution for the pricing PDE and numerical results are
also provided.

2 Optimal hedging strategy

Let S(t, 0) = St be the marginal price of the supply curve. We assume the
price process St follows a geometric Brownian motion

dSt = μStdt + σStdWt, 0 ≤ t ≤ T (1)

where the drift μ is a constant, the volatility σ is a positive real number, W
is a standard Brownian motion, and T is the terminal time of an European
contingent claim C(C = g(ST ) for som function g) of interest. In this study,
we are concerned with discrete time hedging and pricing. Let us consider
equally spaced times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tn = T . Set Δt = ti − ti−1 for
i = 1, ..., n. We consider the following discrete time version of (1)

ΔS

S
= μΔt + σZ

√
Δt, (2)

where Z is a standard normal variable, and assume a multiplicative supply
curve

S(t, x) = f(x)S(t, 0),

where f is a smooth and increasing function with f(0) = 1.
Because we consider discrete time trading, the total liquidity costs up to

time T is

LT =
∑

0≤u≤T

ΔXu [S(u, ΔXu) − S(u, 0)], (3)
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where L0− = 0, and L0 = X0 [S(0, X0) − S(0, 0)] . For the detailed structure of
the liquidity costs, see Section 2 of Ku (2012). Note that the liquidity cost is
always non-negative, since S(t, x) is an increasing function of x.Then, the total
liquidity costs up to time T could rewrite as

LT =
n∑

i=1

ΔXi [S(ti, ΔXi) − S(ti, 0)] + X0 [S(0, X0) − S(0, 0)], (4)

where ΔXi = Xti − Xti−1 . Xt represents the trader’s aggregate stock holding
at time t (unit of money market account). Here, Xt is predictable and optional
processes with X0− ≡ 0.

We let C0 denote the value at time 0 of contingent claim C so that the
hedging error inclusive of liquidity costs is

H =
n−1∑
i=0

Xti(Sti+1 − Sti ) − C + C0 − LT − ΔB. (5)

where B is money market account with

ΔB = rBΔt = r (XS − C)Δt.

Let us consider a European call option C expiring at T with strike price K,
and a hedging strategy X. Let 0 = t0 ≤ t1 ≤ ... ≤ tn = T be equally spaced
trading times and Δt = ti − ti−1 for i = 1, ..., n. A perfect hedging strategy
will produce a zero hedging error with probability 1. But, considering discrete
trading and liquidity costs, it is not possible to produce a strategy whose hedg-
ing error equals 0. We derive a partial differential equation which provides
discrete time hedging strategies whose expected hedging error approaches zero
as the length of the revision interval goes to zero.

Theorem 1. The expected hedging error over the period [0, T ] approaches 0 as
Δt goes to 0 imply that X = CS|S=Sti

is an optimal hedging strategy.

Proof. We have the hedging error over each revision interval is:

ΔH = XΔS − ΔB − ΔC − ΔX (S (t, ΔX) − S (t, 0))

Recall that

ΔB = rBΔt = r(XS − C)Δt

ΔS = μSΔt + σSZ
√

Δt

(ΔS)2 = σ2S2Z2Δt + O(Δt3/2)
(ΔS)k = O(Δt3/2), k = 3, 4, 5, ...
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Over the small time interval [ti−1, ti] , i = 1, n we consider the change in the
call option value is:

ΔC = C(S + ΔS, t + Δt) − C(S, t) = CSΔS + CtΔt +
1
2
CSS(ΔS)2 + O(Δt3/2)

= CSΔS + CtΔt +
1
2
CSSσ2S2Z2Δt + O(Δt3/2)

The liquidity cost at each interval is:

ΔX (S (t, ΔX) − S (t, 0)) = ΔX (f (ΔX) − 1)S (t, 0)

By Taylor expansion with f(0) = 1 we have

f(ΔX) − 1 = f(ΔX) − f(0) = f ′(0)ΔX +
f ′′(0)

2
(ΔX)2 + O

(
(ΔX)3

)
The liquidity cost becomes

ΔX (S (t, ΔX) − S (t, 0)) = ΔX

(
f ′(0)ΔX +

f ′′(0)
2

(ΔX)2
)

S + O
(
Δt3/2

)
= f ′(0)S(ΔX)2 + O(Δt3/2)

Therefore,

ΔH = XΔS − CSΔS − CtΔt − 1
2
σ2S2Z2CSSΔt − rBΔt − f ′(0)S(ΔX)2 + O

(
Δt3/2

)
= ΔS(X − CS) + Δt

(
−Ct − 1

2
σ2S2Z2CSS − r (XS − C)

)
− f ′(0)S(ΔX)2 + O

(
Δt3/2

)
Taking expectation,

E(ΔH) = ΔS(X−CS)+Δt

(
−Ct − 1

2
σ2S2

t CSS − r(XS − C)
)
−E

[
(ΔX)2

]
f ′(0)S+O

(
Δt3/2

)
Since the expected hedging error over the period [0, T ] approachs 0 for any S
when Δt becomes small, the total hedging error over [0, T ] is

E(
∑

ΔH) =
∑

E (ΔH) ∼ O(Δt)

which imply

ΔS(X − CS) = 0 (6)

and

Δt

(
−Ct − 1

2
σ2S2

t CSS − r (XS − C)
)
− E

[
(ΔX)2

]
f ′(0)S = 0 (7)

From (6), we have
X = CS|S=Sti

.

�
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Corollary 1. Let C(S, t) denote the solution of the following partial differential
equation

Ct +
1
2
σ2S2

t CSS + r (CSS − C) + f ′(0)S3
t σ2C2

SS = 0 for all t ∈ [0, T ), S ≥ 0,(8)

with the terminal condition C(S, T ) = (S − K)+. The expected hedging error,
using the hedging strategy X = CS|S=Sti

, over the period [0, T ] approaches 0
as Δt goes to 0.

Proof. The change in the hedging strategy is

ΔX = CS (S + ΔS, t + Δt)−CS (S, t) = CSSΔS+CStΔt+
1
2
CssS (ΔS)2+O

(
Δt3/2

)
and

(ΔX)2 = C2
SS(ΔS)2 + O(Δt3/2) = C2

SSσ2S2
t Z2Δt + O(Δt3/2)

Taking expectation, we have

E
[
(ΔX)2

]
= C2

SSσ2S2
t Δt + O(Δt3/2)

Therefore, (7) becomes

Δt(Ct +
1
2
σ2S2

t CSS + r (CSS − C) + f ′(0)S3
t σ2C2

SS) = 0

If C satisfies PDE following

Ct +
1
2
σ2S2

t CSS + r (CSS − C) + f ′(0)S3
t σ2C2

SS = 0

with the boundary condition C(x, T ) = (x − K)+, then the expected hedging
error over the period [0, T ] approachs 0 as Δt becomes small. �

Corollary 2. The value of the discrete time delta-hedging strategy (X =
CS , Y = C − CS) where C is the solution of the PDE in Theorem 1 converge
almost surely to the payoff of the option (S − K)+ including liquidity costs, as
Δt → 0.

Proof. Let ΔHi denote by the hedging error over time interval [ti−1, ti]. We
note that (after dropping the subscripts i’s of ΔHi)

E[(ΔH)2] = E

[(
−CtΔt− 1

2
CSS(ΔS)2 − r(CsS − C) − f ′(0)C2

SSσ2Z2S3Δt

)2
]
≤ M(Δt)2,

for some constant M over all t ∈ [0, T ] because of the smoothness condition on
C.
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By the Law of Large Numbers for Martingales (see Feller, 1970, p. 243),

E

[
ΔHi

Δt
|Fti−1

]
= 0,

for all i and

∞∑
i=1

1
i2

E

[(
ΔHi

Δt

)2
]
≤ M

∞∑
i=1

1
i2

< ∞

imply that

1
n

n∑
i=1

ΔHi

Δt
=

Δt

T

n∑
i=1

ΔHi

Δt
=

1
T

∑
ΔHi → 0

almost surely as Δt → 0. This leads to almost sure convergence of the total
hedging error

∑
ΔHi as Δt tend to 0.

� Remark.The expected hedging error over each revision interval is expressed
similarly to the one studied by Ku et al.(2012). However, our approach to the
problem differs from that of Ku et al. because we don’t use assumption of zero
interest rate. Moreover, we proved that the delta hedging is still an optimal
strategy in the presence of liquidity risks.

3 Analytic solution of PDE

In this section, we discuss a possible analytic solution for the pricing equation
derived in Section 2. We explain briefly how to approximate the option value
including liquidity costs using a series solution.

Let α = f ′(0). Now (8) is written as

Ct +
1
2
σ2S2CSS + ασ2S3C2

SS + r(CSS − C) = 0 for all t ∈ [0, T ), S ≥ 0,(9)

with the boundary condition C(S, T ) = (S − K)+.

For sufficiently small α > 0, we seek a solution in the form of

C(x, t) = C0(x, t)+ αC1(x, t) + α2C2(x, t) + ... = C0(x, t)+ αC1(x, t)+O(α2),
(10)

Inserting (10) into (9), we obtain the following equations for C0(S, t) and
C1(S, t):

∂C0

∂t
+

1
2
σ2S2 ∂2C0

∂S2
+ rS

∂C0

∂S
− rC0 = 0 for all t ∈ [0, T ), S ≥ 0, (11)



199

with the condition C0(S, T ) = (S − K)+, and

∂C1

∂t
+

1
2
σ2S2 ∂2C1

∂S2
+ σ2S3

(
∂2C0

∂S2

)2

+ rS
∂C1

∂S
− rC1 = 0 (12)

for all t ∈ [0, T ), S ≥ 0, with the condition C1(S, T ) = 0.
The solution to the Black-Scholes partial differential (11) is well-known as

C0(S, t) = SN(d+) − Ke−r(T−t)N(d−),

where
N(y) =

1√
2π

∫ y

−∞
e−

z2
2 dz,

d+ =
1

σ
√

T − t

[
ln

S

K
+

(
r +

σ2

2

)
(T − t)

]
,

d− =
1

σ
√

T − t

[
ln

S

K
+

(
r − σ2

2

)
(T − t)

]
,

Also, it is known that

∂2C0

∂S2
=

1
σS

√
T − t

N ′(d+) =
1

σS
√

T − t

1√
2π

e−
1
2 (d+)2 . (13)

Substituting(13) into (12), we obtain

∂C1

∂t
+

1
2
σ2S2 ∂2C1

∂S2
+ rS

∂C1

∂S
− rC1 +

S

2π(T − t)
e
−

[
ln S

K
+

(
r+ σ2

2

)
(T−t)

]2

σ2(T −t) = 0 (14)

with the condition C1(S, T ) = 0.
The result of this PDE can be solved by using Implicit Finite Difference
Method. The time-space grid of points is created over which the approxi-
mate solution is computed.
Time domain t ∈ [0, T ] is discretized by (N +1) points evenly spaced with time
step h:

0 = t0 < t1 = δt < ... < tN = Nδt = T

The natural domain is (−∞, +∞) is truncated to [0, Smax], and discretized by
an (M + 1) point uniform grid with spacial step δS,

0 = S0 < S1 = δS < ... < SM = MδS = Smax

We build a mesh consisting (N + 1) × (M + 1) points (ti, xj), and denote the
solution of the PDE at these mesh points

fi,j = C1(ti, Sj) for 0 ≤ i ≤ N, 0 ≤ j ≤ M
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For the implicit method, (14) is discretized using the following formulas

∂f

∂t
=

fi+1,j − fi,j

δt
∂f

∂S
=

fi,j+1 − fi,j−1

2δS
∂2f

∂S2
=

fi,j+1 − fi,j−1 − 2fi,j

(δS)2

where the indices i and j represent nodes on the pricing grid.
Substituting these approximations into the PDE gives,

fi+1,j − fi,j

δt
+ rjδS

fi,j+1 − fi,j−1

2δS
+

1
2
σ2(jδS)2

fi,j+1 − fi,j−1 − 2fi,j

(δS)2
− rfi,j + Wi,j = 0

where Wi,j = jδS
2π(T−iδt)

e
−

[
ln jδS

K
+

(
r+ σ2

2

)
(T −iδt)

]2
σ2(T−iδt) .

which reduces to

ajfi,j−1 + bjfi,j + cjfi,j+1 = fi+1,j + Wi,j (15)

where

aj =
1
2
δt(rj − σ2j2)

bj = 1 + δt(σ2j2 + r)

cj =
1
2
δt(−rj − σ2j2)

Since the equations are solved working backwards in time, superficially (15)
says that three unknowns must be calculated from only one known value. This
is shown pictorially in the following diagram,

Figure 1: Implicit Finite Difference Viewed as a Pseudo-Trinomial Tree
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However, when all the equations at a given time point are written simula-
taneously there are M − 1 equations in M − 1 unknowns. Hence the value for
f at each node can be calculated uniquely.

In the option pricing framework, given the option payoff at expiry nodes
then the prices δt before expiry can be calulated, then from those prices the
value 2δt before expiry can be calculated, and working iteratively backwards
through time until the option price at grid nodes for t = 0 (i.e. today) can be
calulated.

The formulation for the implicit method given in equation

ajfi,j−1 + bjfi,j + cjfi,j+1 = fi+1,j + Wi,j

could be written in the matrix notation

BFi = Fi+1 + Ki + Wi i = N − 1, ..., 1, 0

where

Fi = [fi,1 fi,2 · · · fi,M−1]T

Ki = [−a1fi,0 0 . . . 0 − cM−1fi,M ]T

and

B =

⎡
⎢⎢⎢⎢⎢⎣

b1 c1 0 · · · 0 0
a2 b2 c2 · · · 0 0
0 a3 b3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aM−1 bM−1

⎤
⎥⎥⎥⎥⎥⎦

Theorem 2. The infinity norm of B−1 is always less than 1 then the Im-
plicit Finite Difference Methods for (14) converges, or is stable for all values
of ρ, σ, δt.

Proof. The formulation for the implicit method given in equation

ajfi,j−1 + bjfi,j + cjfi,j+1 = fi+1,j + Wi,j

is written in the matrix notation

BFi = Fi+1 + Ki + Wi i = N − 1, ..., 1, 0 (16)

An iterative algorithm that is unstable will lead to the calculation of ever
increasing numbers that will at some point approach infinity. On the other
hand, a stable algorithm will converge to a finite solution. Typically the faster
that finite solution is reached the better the algorithm.
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From standard results in matrix algebra it is known that a matrix equation
of the form given in (16) is stable if and only if

‖B−1‖∞ ≤ 1

Heuristically, if the infinity norm of B−1 is less than 1 then successive values
of Fi get smaller and smaller, and hence the algorithm converges, or is stable.
(Alternatively if the infinity norm of B−1 is greater than 1 then successive
values of Fi get larger and larger and hence diverge.)

It can be shown that the infinity norm of B−1 is less than 1 for all values
of ρ, σ, δt, see Section 6 of Duffy (2006). Hence the Implicit Finite Difference
Method is always stable. � We next present some numerical simulations to
examine the effect of liquidity costs on option prices.

Table 1: Option prices with liquidity costs.

Initial spot Liquidity cost f ′(0)
0 (Black-Scholes) 0.0001 0.0005 0.001 0.002

80 1.5617 1.5711 1.6089 1.6562 1.7507
85 2.7561 2.7698 2.8246 2.8932 3.0303
90 4.4479 4.4652 4.5343 4.6207 4.7935
95 6.6696 6.6887 6.7650 6.8604 7.0513
100 9.4134 9.4320 9.5063 9.5992 9.7849
105 12.6388 12.6546 12.7181 12.7975 12.9562
110 16.2837 16.2953 16.3414 16.3990 16.5143
115 20.2769 20.2832 20.3080 20.3391 20.4013

Table 1 presents the option prices inclusive of liquidity costs with varying f ′(0)
and initial stock price S0. The options prices are obtained by solving the PDE
given in Theorem 1 numerically. The parameter values that we used are strike
price K = 100, r = 0.2 and T = 1 year. Consistent with intuition, we observe
that the option prices increase slightly when the parameter of liquidity costs
f ′(0) (the slope at 0 of supply curve) increases.
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