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Abstract

In the present work, the problem of the motion of self-propelled two
rotating side-by-side circular cylinders in a viscous incompressible fluid
is investigated numerically. The surface of left cylinder rotates counter-
clockwise and right clockwise at the same speed. The flow patterns and
the drag coefficients of regimes of self-motion are analyzed for a vari-
ous range of rotational speed and different gap spacings at a moderate
Reynolds number.

1 Introduction

In physical and biological sciences, and in engineering, there is a wide range
of problems of interest concerning the flow past a self-propelled bodies. The
propulsion may be by means of drawing fluid inwards across portions of the
boundary and expelling it from others, so that the net flux of momentum across
the boundary is nonzero. The literature on the numerical simulation of motion
of self-propulsion of a rotating body has not been investigated widely. There
is only Sungnul and Moshkin (2006) studied the self-propelled motion of two
rotating circular cylinders. They found that a self-motion regime occur at
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critical rotational speed of the surface of left cylinder rotates clockwise and
right counter-clockwise.

In this work, we extend on the more limited work by Sungnul and Moshkin.
We examine the the problem of the motion of self-propelled two rotating circu-
lar cylinders in more detail and consider the case of the surface of left cylinder
rotates counter-clockwise and right clockwise at the same speed.

2 Mathematical model

Assuming the flow remains axisymmetric for all time, makes the cylindrical
bipolar coordinate system attached to the cylinder:
csinhn csing
r=—— = z=1z
coshn — cos ¢’ coshn — cos &’
where £ € [0,27),n € (—00, ), 2z € (—00, 00), cis a characteristic length which
is positive. The curves of constant £ and 7 are circles in zy-space

2

22+ (y —ceot&)? = Fesc® ¢, (x — ceothn)? 4 y? = Pesch?y. (2)

Figure 1 shows the two cylinders have diameter D and the distance between
them is g. If g and D are given, one can find ¢ and 5 as following

D
c= Vgt 2 nln<(9*+1)i (9*+1)2—1>7as s=2

The Navier-Stokes equations in the cylindrical bipolar coordinate system
(&, n, 2) are

ov v v 1/ . . 1 8p
8t€ D ( as +on 8;) e (sinhn(ogen) = sing(og)”) = “hog

2 [ 1 (821;5 821;5

- 2 . ov . Ov coshn + cosf)
— hnp—=F — n\ _ (coshn+cosg .
+Re DE2 Rilwe 7 ) o (sm N5 5o 87;) ( - wl, 3
81;77 81;,7 81,77 1., : ‘ o
ot + = ( B + vy o + = (Slnhﬁ(vg) — SlnE(vgvn)> _ _Ea_n (4)
— [ ’ ° o ) _
i |7 (8v”+8””)+3(sinhnﬁ_smg_%)_<M)% 7
Re [ \'0e2 " o ) " ch o€ an c _

1 {8(hv§) 8(hv77)} _o, (5)
h? o¢ on

where p is the pressure, v¢ and v, are the velocity components in £ and 7
directions, respectively, and h = ¢/ (coshn — cos{). The velocities are non
dimensionalized with the free stream velocity U, all lengths are non dimen-
sionalized with the radius a and the pressure by pU2 . Here Re denotes the
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Figure 1: Sketch of the geometry of the problem.

22U a

Reynolds number defined by Re = , where v is the kinematic viscosity

v
coefficient. Boundary conditions for v¢ and v, include the no-slip and imper-
meability conditions

ve=0a, v,=0, &e(0,2n] (6)

where o = (aw)/Us is the nondimensional rotational velocity at the surface,
the periodicity conditions

ve (§,m) = ve (§+2m,m), vy (& n) = vy (E+ 2m, 1), p(£7n):p(£+2mn)( )
7

and the far-field condition

7= (vg,vy) = (0,1), p= as 2 +y° — oo. (8)

Poo
PUZ,
Here, v, and v, are the components of the velocity vector in the cylindrical
coordinate system with

h h
ve = - sinhnsinf) Vg + (E (coshncosg — 1) | vy

c . )
vy, = | —— (coshncos & — 1)) Vg — (— sinhnsing ) vy.

a a

The main characteristic of the flow around the body is the drag coefficient
which comprises a pressure drag coefficient and a viscous drag coefficient, i.e.
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Cp = Cp, + Cp,. They are defined as

1 Lo 1 L7
CDp:—m/pn~Zde7 Cp; :—m/u(nxw)wyds

= =

3 Numerical Method

In the case of steady flow, time in Equations (3) - (5) can be considered as
an artificial (iterative) parameter. A staggered arrangement of the variables
on a uniform grid is used. A two-step time-split projection method is utilized
to advance the flow field. First, the velocity components are advanced from
time level “n” to an intermediate level “*” by solving Equations (3) - (5) ex-
plicitly without the pressure term. In the advection-diffusion step, the spatial
derivatives are approximated by the central finite differences. One side finite
differences are utilized near boundaries due to the staggered arrangement of
variables. Then the Poisson equation for the pressure is solved fully implicitly
by the method of stabilizing correction (see Yanenko [7]). The equation for
pressure is derived by using the mass conservation requirement for each com-
putational cell. Once the pressure is updated, the final level is computed with
a pressure-correction step. Figure 2 shows the computational domain, sketch
of the grid, and location of the unknowns. Far-field boundary conditions (8)
are shifted on the boundary of domains €21 and €5 which are defined as

M ={En] 0<§<ee,—, <<yt (10)
Qo ={(§n) | 2m—ee <EL2m, —5, << gy ),

where ¢, = KA, and g¢ = MAg, K and M are integer numbers, and A,
and Ag are the size of computational cell in the » and & directions, respec-
tively. In the physical space (z,y, z) the boundaries of domains €4 and €5 are
located sufficiently far from the cylinders and these boundaries are the coordi-
nate surfaces that are convenient for the implementation of a finite difference
method.

4 Results

The characteristics of flow past two rotating circular cylinders in side-by-side
arrangement at Reynolds numbers e = 40 with a rate of rotation of —6.0 <
o < 3.0 for g* = 1 were studied. The cylinder is placed in a vertical stream
(from down to up) of uniform flow velocity U, as shown in Figure 1. Figure 3
demonstrates variation of toatla drag coefficient C'p versus rotation rate « for
Reynolds numbers Re = 40 and ¢g* = 1. The graphics of Cp = Cp(a) have a
bell shape with maximum value at o &~ —1.5. The cases of zero drag correspond
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Figure 2: Staggered arrangement of w,v and p.
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Figure 3: Variation of drag coefficient  Figure 4: Pressure and firictional con-
with rate of rotation for Re = 40 and  tributions to Cp = Cp, + Cp; for
g =1 Re=40and g* =1 .
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to the self-motion of two rotating circular cylinders at o« = —6.03 and oo = 2.79.
Figure 4 shows the pressure and viscous drag coefficient contributions to the
total drag coefficient for Reynolds number Re = 40 and a gap spacing ¢* = 1.
Nonmonotonic behavior of Cp occurs due to variation of the pressure force.
Figure 5 shows streamline pattern and direction of velocity vector for the case
of gx =1, Re = 40 and o = —6.03 (self-motion), —5.0, —4.0, —2.0, 0.0, 1.0, 2.0
and 2.79 (self motion). In the self-motion regime corresponding to the positive
o, the main stream flows around a virtual elliptic region which encloses the
rigid cylinders.

The self-motion regime corresponding to the negative o &= —6.03 associ-
ated with the jet of fluid expelled from the hole.

5 Conclusion

In the present study, we have investigated numerically the self-propelled of
two rotating side-by-side circular cylinders at Reynolds number Re=40 with a
gap spacing ¢* = 1 for a range of rotational rate —6.0 < o < 3.0. The self-
propelled motions of two rotating circular cylinders occur at @ = —6.03 and
o = 2.79. Two regimes of self motion are difference. In the self-motion regime
corresponding to the positive o, the main stream flows around a virtual elliptic
region which encloses the rigid cylinders. The self-motion regime corresponding
to the negative « associated with the jet of fluid expelled from the hole.
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Figure 5: Streamline patterns of flow past two rotating circular cylinders at

Re = 40 with g« = 1.
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