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Abstract

Carbon nanotubes play an important role in nanotechnology world-
wide because of their physical and mechanical properties. Their applica-
tions can be found in drug delivery, nano-bearings and nano-oscillators.
In this paper, we study the oscillatory behaviour of a Cgg fullerence inside
single-walled carbon nanotubes (SWCNTSs) by using the finite element
method based on the Arbitrary Lagrangian Eulerian (ALE) approach.
We apply the continuum assumption and the Lennard-Jones potential
for non-bonded interaction potential energy between two molecules. The
movement of the Cgo fullerene described by Newton law of the motion
associated with the van der Waals force and a frictional force, is inves-
tigated. It is assumed that the Cgp fullerene is initially set outside the
nanotubes.

Key words: Lennard-Jones potential, single-walled carbon nanotubes, Cgg fullerene, Arbi-
trary Lagrangian Eulerian.
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1 Introduction

Nanotechnology is one of the most important research and development fron-
tiers in modern science. Carbon nanotubes (CNTs) are one of the most inter-
esting branches of nanotechnology, which can be applied to benefit many fields
such as drug delivery, therapy techniques, diagnostic and imaging techniques,
anti-microbial techniques, cell repair, nano-bearings and nano-oscillators. Iijima
[6] discovered the carbon nanotubes in 1991, which are tubular structures like a
sheet of graphite rolled up into a cylindrical tube, with high aspect ratio. Iijima
et al. [7] and Bethune et al. [1] discovered the simplest kind of carbon nanotube
in 1993. The applications of nanotechnology in the field of health care can be
described by Khan [8] consist of disease diagnosis, prevention and treatment of
disease, more efficient drug delivery system with minimal side effects and tissue
reconstruction. Surendiran et al. [11] improved methods of cancer detection
based on nanoparticles which can be used as contrast agents, fluorescent ma-
terials, molecular research tools and drugs with targeting antibodies. Girifalco
et al. [5, 4] used the Lennard-Jones potential energy function to determine the
universal graphitic system. Zheng and Jiang [13] presented a gigahertz oscil-
lator of multi-walled carbon nanotubes with different core lengths. To analyze
the frequency of the core oscillation, they used Newton’s second law which is
given by

Mi(t) = Feaw +F, (1)

where M is the total mass of the core, F,gqw and I, are the van der Waals force
and total intershell sliding resistance force, respectively. Zheng et al. [14] ap-
plied the Lennard-Jones potential energy function to determine the energy for
multi-walled carbon nanotubes and proposed gigahertz frequency oscillators.
The objective of this paper is to study the oscillatory behaviour of a Cgo
fullerence inside single-walled carbon nanotubes by using the finite element
method based on the Arbitrary Lagrangian Eulerian (ALE) approach. The
Cgo fullerence is chosen in this study because it has unique properties which
have draw the interest of many researchers. The governing equation of the Cgg
fullerence motion includes Newton’s law of the motion associated with the van
der Waals force derived from Lennard-Jones potential [2] and a frictional force.

2 Mathematical Model

To study the oscillatory behaviour of a Cgg fullerene inside a carbon nan-
otube, we assume that the system consisting of the nanotube and the nanopar-
ticle occupies a bounded Q in R?. Ata typical instant of time ¢, the nanoparti-
cle occupies a closed connected subset Q, C R?. The computational domain is
then given by Q — €, which is called the area of particle motion. In this study,
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we use two coordinate systems: a reference system €2 where the model is drawn
and the particle movement is solved, and a moving mesh system {g4.; corre-
sponding to the deformed mesh where we simulate the particle motion inside
the nanotube. The time evolution of the domain €4, is determined by means
of an Arbitrary Lagrangian Eulerian (ALE) [3] mapping x : @ x R +— Qg
which maps any point (X,?) in € to its image x(X,¢) in Qgey.

2.1 Arbitrary Lagrangian Eulerian Approach

In this section, we introduce the numerical techniques of continuum mechan-
ics which can be classified into the Lagrangian and the Eulerian methods. In
the Eulerian approach, the computational grid is fixed in time. For dynamical
systems, the pure Eulerian approach is not suitable for simulations because it
is unable to treat moving boundaries. To study fullerene motion inside carbon
nanotubes, there exists a mass movement in computational domains, repre-
senting the particle movement through the grid. In the Lagrangian approach,
the computational grid moves with the particle. However, it can lead to severe
grid distortions due to, for example, a shear in velocity, so the mathematical
assumptions of the numerical method are violated. To resolve these problems,
the Arbitrary Lagrangian Eulerian (ALE) method [3] is used. In the ALE
method, several steps of pure Lagrangian computation are performed. Then,
a mesh rezoning technique is used to keep the computational grid smooth and
convex during the whole computation as shown in Figure 1.

To construct a mesh-based numerical model involving the motion of parti-
cles motion, we will introduce the Arbitrary Lagrangian-Eulerian method which
will involve the mesh movement of the numerical model. Due to the movement
of the coordinate system, the mesh velocity ¥ = (¥, ¥,) is introduced in the
deformed domain Qg4.f¢. To guarantee a smoothly varying distribution of the
nodes, we know that the nodes on 92, move with the particle and that each
component of the mesh velocity in the area of particle motion is governed by a
Laplace equation [15]:

VW =0, Vx€ Q. (2)

From equation (2), it is to smooth gradient of the mesh velocity over the
domain so as to reduce mesh distortion. Once the mesh velocity components
are determined, we can determine the smoothed deformed mesh for the area of
particle motion at each time instant by updating the coordinates of the nodes
according to the following formulae

e o= X + [1 0, dt,

3
z o= Z+ [0, dt )
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Figure 1. One-dimensional example of Lagrangian, Eulerian and ALE mesh
and particle motion [3].
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Another condition that needs to be specified is that the particle and mesh
all move with the same velocity on the particle boundaries, i.e.,

¥ =V on 99, (4)

The detail of how to determine the mesh velocity, ¥, using the finite element
method can be found in [12].

2.2 Lennard-Jones Potential Function

In the continuum approach, it is assumed that carbon atoms are uniformly
distributed over the surface of the molecules and the non-bonded in tradition
energy is given by

E:ngnf/ / O(r)dEsdy,, (5)
Yig S Xy

where n, and n; are the mean surface density of carbon atom on a carbon
nanotube and a Cgp fullerene, respectively, and » denotes the distance between
two typical surface elements d>; and d>; on each molecule.

The Lennard-Jones potential energy which is a function used to describe
the interaction between a pair of neutral atoms or molecules [9] is given by

O(r) = —Ar ¢ Br 12, (6)

where A and B are the attractive and the repulsive constants, respectively. By
performing an integral of the classical Lennard-Jones potential over the Cgg
fullerene, the potential energy is in the form

P(p) = —Qs(p) + Q12(p), (7)

where p is the distance between an atom and the wall of the carbon nanotube
and the determination of @Q,, is detailed in [2, 10] with coefficients Cs = A and
(12 = B. Then we have

P0="C05 (e ww) 5 (G o)) ©

where b is the radius of Cgp fullerene. The geometry of a Cg fullerene oscillation
in a single-walled carbon nanotube is shown in Figure 2.

The van der Waals interaction force between the fullerene molecule and the
carbon nanotube is given by

Foaw = —VP. (9)
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Figure 2: A Geometry of a Cgo fullerene oscillation in a single-walled carbon
nanotube.

Assuming the forces are in the axial direction, the van der Waals force is given
by
(Z —2)dP

Fy=— —. 10
7 PR (10)

Thus, the total axial force between the Cgo molecule and the entire carbon
nanotube is obtained by performing the surface integral of equation (9) over
the carbon nanotube, therefore we may deduce

(Z —z2)dP

FiYZ) = —2a7r779/ -
0

and letting p? = a® 4+ (Z — 2)?, we have dp = —[(Z — 2)/p]dz. Thus, equation
(11) becomes

F'*NZ)y = —2a7r779/ £clz
VaZtz2 dz
A 1 1
_ 2.2 —
I {%p ((p +0)t (p—b)t )
B ( 1 1 > } (12)
Sbp \(p+0)10  (p=0)1 ] _jomrm

Using the partial fractions in the terms of (p? — b?) and we rewrite equation
(12) as follows

San > 2 B 80 336 512 256
tot _ g
B == AU e Pty e e o) 9

where A = (a? —b® + Z2/)b°.
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2.3 Movement of a Cgy fullerene in the Deformed Mesh
System

In this section, the mathematical model for the particle motion inside a
nanotube is presented. The governing equation for particle motion is Newton’s
second law of motion. It is assumed that a carbon nanotube is of length
2L = 129A of radius a and the Cgg fullerene is set to move along the z-axis
to avoid the rocking the motion. Now consider the mathematical model for
particle motion. We assume that the gravitational force can be neglected and
the particle motion is governed by Newton’s second law:

dv
mﬁ == FtOt — F,m (14)

V(ty) = 0,
where m is the total mass of the nanoparticle, V is the velocity of the particle,
F'°! is the total van der Waals interaction force between the nanoparticle and

the carbon nanotube and F, is a friction force. The position X of the center
of the nanoparticle can be defined as

dX

— =V 15
s 7 (15)
X(ty) = Xo.

As a preliminary study, we are only concerned with the forces in an axial
direction. Therefore, the total axial van der Waals interaction force between
the nanoparticle and the carbon nanotube, F%* is given by equation(13).

The frictional force F,.(Z) is a periodic inter-atomic locking force defined
by [14]

F.(Z) :nosin(¥)7 (16)

where ¢ = /30 is the spatial period of the inter-atomic locking, o is the carbon
- carbon bond length. Typically for an armchair carbon nanotube, ko = 750,
where 7, is the resistance strength and « is the area of contact ring of certain
prescribed length of the sphere, given by o = 47b? sin(6y/2), for a certain angle
.

3 Numerical Results and Discussions
In this section, we present the numerical results of the movement of a

Cgo fullerene inside the carbon nanotubes of different radii which are (11,11),
(12,12) and (13,13). Their radii and all other constants used in calculations
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throughout this study are given in Table 1. In our simulations, the Cgg fullerene
is initially set outside the nanotubes at Z(to) = —80A. The finite element
method based on the Arbitrary Lagrangian Eulerian approach is used to simu-
late the oscillatory behaviour of the nanoparticle in the nanotubes and we set
At =1x 1075 or 1 attosecond. Note that the finite element mesh changes as
the nanoparticle moves down the tube. In Figure 10, we plot the z components
of the total force acting on the Cgo fullerene for the three carbon nanotubes:
(11,11), (12,12), (13,13) of radius a=7.463, a—=8.141, and a=8.820A, respec-
tively. For the three cases of the offset distance, we assume that the potential
energy is negatively minimum. For the (11,11) nanotube, the total force near
both open ends of the tube are attractive forces. After the encapsulation, the
particle moves very fast inside the nanotube at constant speeds v = 798 m/s as
shown in Figure ??, vielding an oscillatory motion with a gigahertz frequency
f =130.93 GHz. For the (12,12) and (13,13) nanotubes, the similar oscillatory
motion is found with v = 638,513 m/s and f = 24.73,19.88 GHz, respectively.

Note that the offset distance is set for the minimum energy of the (11,11)
nanotube, (12,12) nanotube, and (13,13) nanotube. It is seen that the Cgq
fullerene will move faster inside the the (11,11) nanotube, compared to the
larger (12,12) and (13,13) nanotubes. Comparing the nanoparticle inside the
(11,11) nanotube, it shows that the nanoparticle located at minimun energy
generates a higher total force, and higher frequency than for the other two cases.
It is noted that the suction of the nanoparticle into the nanotubes depends on
the size of the nanoparticle and the radius of nanotubes.

Table 1. Parameters used in our simulation.

Parameter Value
radius of (11,11) (A) a="7.463
radius of (12,12) (A) a=28.141
radius of (13,13) (A) a = 8.820
radius of Cgo fullerene (A) b=2355
carbon - carbon bond length (A) o =1.421

mean surface density-graphen [4y/3/(902)](A=2) | n, = 0.3812
mean surface density-fullerene [60/(47b%)](A=2) | n; = 0.3789

mass of the nanoparticles (kg) m=1.196x10"24
length of carbon nanotube (A) 2L =129
attractive constant (eVxA®) A=174
repulsive constant (eVxA!?) B =29x10°
spatial period of the interatomic locking (A) =30

sliding resistance strength (MPa) 7, = 0.48
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Figure 3: The mumerical results of the > component of the total force acting on the Cgq
fullerene for the three carbon nanotubes: (11,11), (12,12), (13,13). The ends of the tube
are at 2 = —64.5 and 2 = 64.5A.
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Figure 4: The numerical results of the z component of the velocity of the Cgy fullerene
for the three carbon nanotubes: (11,11), (12,12), (13,13). The ends of the tube are at
z=—64.5and z = 64.54.
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4 Conclusions

In this paper, we have studied the oscillatory behaviour of a Cg fullerene
inside single-walled carbon nanotubes of three different sizes: (11,11), (12,12)
and (13,13), with radii of 7.463A, 8.141A and 8.820A, respectively. A finite
element method, based on the Arbitrary Lagrangian Eulerian approach, is used
in simulation of the nanoparticle motion. The Lennards-Jones potential is used
to calculate the van der Waal force. The nanoparticles are initially set at rest
outside the carbon nanotubes and the potential energy is negative. The results
show that the nanoparticles enter into the tubes if the potential energy is
negative. After the encapsulation, the nanoparticles oscillate inside the tube
with highest frequency when the nanoparticles are set at the offset distances
of minimum energy for the (11,11), (12,12) and (13,13) nanotubes. From our
numerical study, it might be able to predict the oscillation of a nanoparticle
in a carbon nanotube, which will become an important issue for a applications
such as drug delivery and nano-oscillator devices.
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