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Abstract

The ring R = F5m + uF5m has precisely 5m(5m − 1) units, which are
of the forms α+uβ and γ, where α, β, γ are nonzero elements of the field
F5m . Using the algebraic structure in term of generator polynomials of
these codes, the Hamming and symbol-pair distance distributions of all
such codes are completely determined.

1. Introduction

Classically, the algebraic structures of constacyclic codes are determined by
ideals of the polynomial rings over finite fields, Galois rings and finite chain
rings. Recently, codes over finite non-chain rings have also been studied. In
2010, Zhu et.al. investigated the structures and properties of cyclic codes over
the ring F2 + vF2 where v2 = v. The structure of codes over the ring Z3 [v]

〈v3−v〉
is studied by Bayram and Siap. After that, Gao and Wang introduced a new
generalization by considering the linear codes over Fp + vFp + v2

Fp. In 2014,
Bayram and Siap continued to study codes over the ring Zp[v]

〈vp−v〉 . The algebraic
structures of linear, cyclic and constacyclic codes over this ring are determined
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by means of a Gray map. By using the Gray map obtained some interesting
classes of quantum error correcting codes over Fp. Moreover, the algebraic
structures of the cyclic codes of arbitrary length over the finite non-chain ring
Fp + vFp + · · ·+ vp−1

Fp where vp = v are also introduced. As noted, this ring
Fp + vFp + · · · + vp−1

Fp is in fact a direct sum of p copies of the finite field
Fp. In recent paper, the algebraic structure of λ-constacyclic codes over such
finite semi-simple rings is investigated. Among others, necessary and sufficient
conditions for the existence of self-dual, LCD, and Hermitian dual-containing
λ-constacyclic codes over finite semi-simple rings were provided.

It is well-known from [5, 6] that the ambient ring Fpm [x]

〈xps−λ〉 is a chain ring.
Therefore, the ideals of the ring are completely determined, i.e., λ-constacyclic
codes are also given. From this, in [5, 6], the Hamming distances of all such
codes are obtained.

Let x = (x0, x1, . . . , xn−1) be a vector in Ξn, where Ξ is a code alphabet.
The symbol-pair distance is given in [2] by using Hamming distance over the
alphabet (Ξ, Ξ) as follows:

dsp(x, y) = |{i : (xi, xi+1) �= (yi, yi+1)}|,

where x, y are vectors in Ξ. Then dsp(C) = minx,y∈C,x �=y{dsp(x, y)} is the
symbol-pair distance of code C. In addition, the symbol-pair distance of a
linear code C is the minimum symbol-pair weight of nonzero codewords of the
code C:

dsp(C) = min{wtsp(x) | x �= 0, x ∈ C}.

The problem of determining the symbol-pair distances is very difficult in
general. Recently, we succesfully established the symbol-pair distances of all
constacyclic codes of length ps over Fpm . Although algebraic structure of all
constacyclic codes of length ps over R = Fpm + uFpm are provided by Dinh in
[6], Hamming and symbol-pair distances ofλ-constacyclic codes have remained
open, where λ ∈ Fpm . Motivated by that, we solved this problem in this paper.
Our technique can also be extended to establish the symbol-pair distance of
α + uβ- and λ-codes, where 0 �= α, β, λ ∈ Fpm .

2. Preliminaries

Let R be a finite commutative ring. In [7], we knew that a finite commutative
ring R is a chain ring if and only if R is a local principal ideal ring. It is also
equivalent to the condition that R is a local ring and the maximal ideal M of
R is principal. A nonempty subset C of Rn is a code of length n over R. The
code C is said to be ”linear” if C is an R-submodule of Rn.
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For an invertible element λ of R, the λ-constacyclic (λ-twisted) shift τλ on
Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, · · · , xn−2),

and a code C is said to be λ-constacyclic if τλ(C) = C.

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its poly-
nomial representation c(x) = c0 + c1x + · · ·+ cn−1x

n−1, and the code C is in
turn identified with the set of all polynomial representations of its codewords.
Then in the ring R[x]

〈xn−λ〉 , xc(x) corresponds to a λ-constacyclic shift of c(x).
From that, the following fact is well-known and straightforward:

Proposition 2.1. A linear code C of length n is λ-constacyclic over R if and
only if C is an ideal of R[x]

〈xn−λ〉 .

For any nonzero λ ∈ Fpm , linear λ-constacyclic codes of length ps over Fpm

are precisely the ideals of the ambient ring Fpm [x]

〈xps−λ〉 .

By applying the Division Algorithm, there are nonnegative integers kq, kr

such that s = kqm + kr, and 0 ≤ kr ≤ m − 1. Let λ0 = λp(kq+1)m−s

= λpm−kr .
Then λps

0 = λp(kq+1)m
= λ. As discussed in [6, Section 3], it is simple to verify

that in Fpm [x]

〈xps−λ〉 , (x − λ0)ps

= xps − λps

0 = xps − λ = 0. Therefore, x − λ0 is a

nilpotent element of Fpm [x]

〈xps−λ〉 with the nilpotency index ps. This implies that
Fpm [x]

〈xps−λ〉 has a maximal ideal which is 〈x − λ0〉 and hence, Fpm [x]

〈xps−λ〉 is a chain
ring. Then the structure of all λ-constacyclic codes of length ps over Fpm and
their duals are determined as follows.

Theorem 2.2. λ-constacyclic codes of length ps over Fpm are precisely the
ideals 〈(x−λ0)i〉, i = 0, 1, . . . , ps, of the chain ring Fpm [x]

〈xps−λ〉 . Each λ-constacyclic

code Ci = 〈(x− λ0)i〉 ⊆ Fpm [x]

〈xps−λ〉 has pm(ps−i) codewords. The dual of Ci is the

λ−1-constacyclic code C⊥
i = 〈(x − λ−1

0 )ps−i〉 ⊆ Fpm [x]

〈xps−λ−1〉 , which contains pmi

codewords.

The number of nonzero components of a codeword x = (x1, x2, ..., xn) ∈ F
n
pm

is defined as the Hamming weight of x, denoted by wtH(x). The number of
components in two codewords x, y which they differ is called Hamming dis-
tance dH(x, y). The Hamming weight and the Hamming distance of a linear
code C are coincided, and defined as the smallest Hamming weight of nonzero
codewords of C:

dH(C) = min{wtH(x) | x �= 0, x ∈ C}.

[5, 6] proved that the Hamming distance of each λ-constacyclic code over



N. T. Bac 13

Fpm is completely determined which is not depend on m. The Hamming dis-
tance of each λ-constacyclic code depends on the characteristic p of the finite
field and the code length ps.

Theorem 2.3. (cf. [5, 6]) Let C be a λ-constacyclic code of length ps over
Fpm , then C = 〈(x − λ0)i〉 ⊆ Fpm [x]

〈xps−λ〉 , for i ∈ {0, 1, . . . , ps}, and its Hamming
distance dH(C) is determined by:

dH(C) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if i = 0
(e + 1)pk,

if ps − p · t + (e − 1)t + 1 ≤ i ≤ ps − p · t + e · t,
where t = ps−k−1, 1 ≤ e ≤ p − 1, 0 ≤ k ≤ s − 1
0, if i = ps.

The ring R = Fpm + uFpm(u2 = 0) can be expressed as R = Fpm [u]

〈u2〉 =
{a + ub | a, b ∈ Fpm}. It is easy to check that R is a chain ring with maximal
ideal uFpm . The ring R has precisely pm(pm − 1) units, which are of the forms
α+uβ and γ, where α, β, γ are nonzero elements of the field Fpm . In 2010, Dinh
[6] gave the structure of all constacyclic codes of length ps over R as follow.

Theorem 2.5. (cf. [6]) Let λ be a unit of the ring R, i.e., λ is of the form
α + uβ or γ, where α, β, γ are nonzero elements of the field Fpm .

1) If λ = α + uβ, then the ring R[x]
〈xps−(α+uβ)〉 is a chain ring with maximal

ideal 〈α0x−1〉, and 〈(α0x−1)ps〉 = 〈u〉. The (α+uβ)-constacyclic codes
of length ps over R are the ideals 〈(α0x− 1)i〉, 0 ≤ i ≤ 2ps, of the chain
ring R[x]

〈xps−(α+uβ)〉 .

2) If λ = γ ∈ F
∗
pm , then the ring R[x]

〈xps−γ〉 is a local ring with the maximal ideal
〈u, x− γ0〉, but it is not a chain ring. The γ-constacyclic codes of length
ps over R, i.e., ideals of the ring R[x]

〈xps−γ〉 , are

• Type 1 (trivial ideals): 〈0〉, 〈1〉.
• Type 2 (principal ideals with nonmonic polynomial generators): 〈u(x−

γ0)i〉, where 0 ≤ i ≤ ps − 1,

• Type 3 (principal ideals with monic polynomial generators):〈
(x − γ0)i + u(x − γ0)th(x)

〉
, where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and

either h(x) is 0 or h(x) is a unit in Fpm [x].

• Type 4 (nonprincipal ideals):
〈
(x − γ0)i + u(x − γ0)th(x), u(x− γ0)κ

〉
,

with h(x) as in Type 3, deg(h) ≤ κ−t−1, and κ < T , where T is the
smallest integer such that u(x−γ0)T ∈ 〈

(x − γ0)i + u(x − γ0)th(x)
〉
;
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i.e., such T can be determined as

T =

{
i, if h(x) = 0
min{i, ps − i + t}, if h(x) �= 0 .

3. Hamming distance

When the unit λ is of the form α +uβ, the Hamming distances of all (α +uβ)-
constacyclic codes of length 5 over R = F5m + uF5m were provided in [6].

Theorem 3.1. (cf. [6]) Let C be a (α+uβ)-constacyclic codes of length ps over
R, then C = 〈(α0x − 1)i〉 ⊆ Rα,β, for i ∈ {0, 1, . . . , 2ps}, and the Hamming
distance dH(C) is completely determined by

dH(C) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if 0 ≤ i ≤ ps

(t + 1)pk,

if 2ps − p · r + (t − 1)r + 1 ≤ i ≤ 2ps − p · r + t · r
where r = ps−k−1, 1 ≤ t ≤ p − 1, 0 ≤ k ≤ s− 1

0, if i = 2ps.

In this section, we compute the Hamming distances of the remaining λ-
constacyclic codes, where λ = γ ∈ F

∗
5m as classified into 4 types in Theorem

2.5. Note that F5m is a subring of R, for a code C over R, we denote dH(CF ) as
the Hamming distance of C

∣∣
F5m

. For each codeword c = (c0, c1, . . . , cn−1) over
R, its polynomial representative c(x) can be expressed as c(x) = f(x) +ug(x),
where f(x), g(x) ∈ F5m [x], with corresponding words f = (f0, f1, . . . , fn−1), g =
(g0, g1, . . . , gn−1) over Fpm . As ci = fi + ugi, ci = 0 if and only if fi = gi = 0,
hence wtH(c(x)) ≥ max{wtH(f(x)), wtH(g(x))}.

Type 1 consists of the trivial ideals 〈0〉, 〈1〉, and obviously they have
Hamming distances 0 and 1, respectively. For a code C = 〈u(x − γ0)i〉 of
Type 2, 0 ≤ i ≤ ps − 1, the codewords of C are precisely the codewords
of the γ-constacyclic codes 〈(x − γ0)i〉 in F5m [x]

〈x5−γ〉 multiplied by u. Therefore
dH(C) = dH(〈(x − γ0)i〉F ), which are given in Theorem 2.4.

Theorem 3.2. Let C = 〈u(x − γ0)i〉, 0 ≤ i ≤ 4, be a γ-constacyclic codes of
length 5 over R of Type 2. Then dH(C) = dH(〈(x− γ0)i〉F ), and is determined
by

dH(C) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if i = 0
(e + 1)pk,

if 5 − 5 · r + (t − 1)r + 1 ≤ i ≤ 5 − 5 · r + e · r
where r = 5−k, 1 ≤ e ≤ 4, and 0 ≤ k
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Theorem 3.3. Let C be a γ-constacyclic codes of length 5 over R of Type 3,
i.e., C = 〈(x − γ0)i + u(x − λ0)th(x)〉, where 1 ≤ i ≤ 4, 0 ≤ t < i, and either
h(x) is 0 or h(x) is a unit in F5m [x]. Then dH(C) = dH(〈(x − γ0)i〉F ), and is
determined by

dH(C) = (e + 1)5k,

where 5 − 51−k + (t − 1)51−k−1 + 1 ≤ i ≤ 5 − 51−k + e5−k, 1 ≤ e ≤ 4, and
0 ≤ k.

Proof. First of all, since u(x − γ0)i = u[(x − γ0)i + u(x − λ0)th(x)] ∈ C, it
follows that

dH(C) ≤ dH(〈u(x − γ0)i〉) = dH(〈(x − γ0)i〉F ).

Now, consider an arbitrary polynomial c(x) ∈ C. That means there exist
f0(x), fu(x) ∈ F5m [x] such that

c(x) = [f0(x) + ufu(x)][(x − γ0)i + u(x − λ0)th(x)]

= f0(x)(x − γ0)i + u[f0(x)(x − λ0)th(x) + fu(x)(x − γ0)i].

Thus,

wtH(c(x)) ≥ max
{
wtH(f0(x)(x − γ0)i), wtH(r(x))

}
≥ max

{
wtH(f0(x)(x − γ0)i), wtH(fu(x)(x − γ0)i)

}
≥ dH(〈(x − γ0)i〉F ),

where r(x) = f0(x)(x − λ0)th(x) + fu(x)(x − γ0)i. Hence, dH(〈(x − γ0)i〉F ) ≤
dH(C), forcing dH(〈(x − γ0)i〉F ) = dH(C). �
Theorem 3.4. Let C be a γ-constacyclic codes of length 5 over R of Type
4, i.e., C = 〈(x − γ0)i + u(x − γ0)th(x), u(x − γ0)κ〉, with h(x) as in Type
3, deg(h) ≤ κ − t − 1, and κ < T , where T is the smallest integer such that
u(x − γ0)T ∈ 〈

(x − γ0)i + u(x − γ0)th(x)
〉
; i.e., such T can be determined as

T =

{
i, if h(x) = 0
min{i, 5 − i + t}, if h(x) �= 0 .

Then dH(C) = dH(〈(x − γ0)κ〉F ), and is determined by

dH(C) = (e + 1)5k,

where 5−p1−k +(t−1)5−k +1 ≤ κ ≤ 5s −5s−k +e5−k, 1 ≤ e ≤ 4, and 0 ≤ k.

Proof. Clearly, C = 〈(x−γ0)i +u(x−γ0)th(x), u(x−γ0)κ〉 ⊇ 〈u(x−γ0)κ〉 ⊇
〈u(x − γ0)i〉, since κ < T ≤ i. Thus, dH(C) ≤ dH(〈u(x − γ0)i〉) = dH(〈(x −
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γ0)i〉F ). To prove that dH(〈(x − γ0)i〉F ) ≤ dH(C), we consider an arbitrary
polynomial c(x) ∈ C and proceed to show that wtH(c(x)) ≥ dH(〈(x − γ0)i〉F ).
Now there are f0(x), fu(x), g0(x), gu(x) ∈ Fpm [x] such that

c(x) = [f0(x) + ufu(x)][(x− γ0)i + u(x − λ0)th(x)]
+ u(x − γ0)κ[g0(x) + ugu(x)]

= f0(x)(x − γ0)i + u[f0(x)(x − λ0)th(x)

+ fu(x)(x − γ0)i + g0(x)(x − γ0)κ]

= f ′
0(x)(x − γ0)κ + u[f0(x)(x − λ0)th(x) + g′0(x)(x − γ0)κ],

where f ′
0(x) = f0(x)(x − γ0)i−κ ∈ Fpm [x], g′0(x) = fu(x)(x − γ0)i−κ + g0(x) ∈

Fpm [x]. Hence,

wtH(c(x)) ≥ max {wtH(f ′
0(x)(x − γ0)κ), wtH(r′(x))}

≥ max {wtH(f ′
0(x)(x − γ0)κ), wtH(g′0(x)(x − γ0)κ)}

≥ dH(〈(x − γ0)i〉F ),

where r′(x) = f0(x)(x − λ0)th(x) + g′0(x)(x − γ0)κ. �
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