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Abstract

Semantic similarity between words, concepts or sets of concepts has
been a fundamental theme and widely studied in various areas including
natural language processing, document semantic comparison, artificial
intelligence, semantic web, semantic web service, and semantic search
engines. Several similarity measures have been proposed but they are
usually tied to special application domains or information representation
of various application domains.

In this paper, we present a mathematical model for distance-based
semantic similarity estimation in domains that are represented with on-
tology - an explicit specification of conceptualization of such domains.
Based on this model, we construct algorithms to calculate the semantic
similarity between two concepts and one between two sets of concepts.
The significance of the proposed mathematical model is that it offers
a generalization that enables to maintain flexibility and thus supports
various computational measures.

1. Introduction

Determining the semantic relatedness between words, concepts or sets of con-
cepts refers to computing a measure of similarity between those ones. Such
computation has played an important role in distributed systems to enable to
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be understandable among interacting autonomous components. Semantic sim-
ilarity, which is the form of semantic relatedness, has become one of important
research areas in computation. It has been widely used in applications includ-
ing natural language processing, document comparison, artificial intelligence,
semantic web, semantic web service and semantic search engines. Several sim-
ilarity measures have been proposed ([1] [2] [3] [4] [5] [6] [7] [8] [9]) such as
ones based on information content, cosine coefficient, Dice coefficient, measure
based on distance and so on. Such measures are usually tied to some special
application domain or information representation of application domains. Es-
pecially, in Semantic Web or Semantic Web Service ([1] [6] ), description of an
object is represented in the standard Ontology of Web Language (OWL) or
OWL-based Web Service Ontology (OWL-S), which is the type of knowledge
representation with semantic network in Artificial Intelligence. Methods ad-
dressing similarity in these domains is based on the structure OWL or OWL-S.
Although several techniques of computing similarity in various domains has
been proposed, a general computational model of semantic relatedness remains
a challenging task.

In this paper, we introduce a mathematical model for distance-based se-
mantic similarity estimation in domains that are represented with various on-
tologies. First of all, we investigate a mathematical representation of semantic
distance between concepts in an ontology. Then, we examine a mathematical
model for similarity of two concepts as well as similarity between a concept
and a set of concepts. Based on this model, we develop algorithms to calcu-
late the semantic similarity between two concepts and one between two sets of
concepts. The significance of the proposed mathematical model is that it offers
a generalization that enables to maintain flexibility and thus supports various
computational measures. The remainder of this paper is organized as follows.
Section 2 is devoted to our mathematical model for semantic similarity measure
between two concepts. Section 3 presents a mathematical model for semantic
similarity measure between two sets of concepts. Section 4 is the discussion of
our model and then compares it with some related works as well. Conclusion
is given in Section 5.

2. Semantic Similarity between Two Concepts

2.1. Semantic Similarity between Concepts in an Ontology

Definition 1. An ontology is a 2-tuple G =< C,V >, in which C is a set of
nodes corresponding to concepts defined in the ontology and V is a set of arcs
representing relationships of couples of nodes in C.

In this paper, rather than considering the properties of nodes, we focus on
relationship between concepts. A relationship in V is defined as follows: If
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x, y ∈ C and < x, y >∈ V, then x is called the parent of y, and y is the child
of x. An ontology is of the tree form, in which each node has a unique parent,
but may have several child nodes.

Definition 2. Let C be a set of concepts. A similarity measure sim : C × C
→ [0, 1] is a function from a pair of concepts to a real number between zero and
one such that:

(i) ∀x ∈ C sim(x, x) = 1;

(ii) ∀x, y ∈ C sim(x, y) = sim(y, x).

Definition 3. The path length L(c1, c2) between concepts c1 and c2 in an on-
tology is the length of the shortest path from node c1 to node c2 on the ontology.

In order to compare the semantic similarity between concepts on ontology,
the following assumptions are accepted:

Assumption 1. Let c1 and c2 be two concepts defined in an ontology whose
root node is root, then:

(i) If two concepts are identical, their path length is 0: L(ci, ci) = 0 with ∀i.
Then their semantic similar is maximal and then could be normalised as
1;

(ii) The path length between any concept to the general root of the ontology is
maximal L(ci, root) =∞ with ∀i;

(iii) If two concepts are independent - they have no common root concept (their
common root concept is the general root of the ontology), then their sim-
ilar is minimal and could be normalised as 0;

(iv) The longer the path from each of them to the other is, the less semantic
similar they have;

(v) If two concepts have a common root concept, then their semantic relation
is defined as follows:

– If this one is parent of the another one, then their similar is bigger
than if the common root concept is not in two them;

– The longer the path from each of them to the common root concept
is, the less semantic similar they are.

Let c0 be the nearest common ancestor concept of two concepts c1 and c2,
we have L(c1, c2) = L(c1, c0) + L(c0, c2). Based on the above assumption, we
can define a pre-similar function as follows:
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Definition 4. A function f : �+×�+ → [0, 1] is pre-similar, denoted pre-sim,
iff it satisfies the following conditions:

(i) f(0, 0) = 1;

(ii) f(∞, l) = f(l,∞) = 0;

(iii) f(l1 , l2) = f(l2 , l1);

(iv) f(l1 , l2) � f(l3 , l4) if l1 + l2 � l3 + l4;

(v) f(l1 , l0) � f(l2 , l0) if l1 � l2;

(vi) f(l0 , l1) � f(l0 , l2) if l1 � l2.

It is easy to prove the following propositions:

Proposition 1. The functions f, g determined by the following formulas

(i) f(x, y) = 1
(x+y+1)n n = 1, 2...

(ii) g(x, y) = 1
ex+y

are pre-sim functions.

Proposition 2. Given a pre-sim function font : �+ × �+ → [0, 1]. The
function sont : C × C → [0, 1] between concepts c1 and c2 with the nearest
common ancestor c0 on an ontology determined by the formula

sont(c1, c2) = font(L(c1, c0), L(c0, c2))

is a similar measure.

Estimating the ontology-based semantic similarity is presented in Algorithm
1. First of all, searching the common parent node of the two given concepts
(Step 1), then calculating the path length between each one to their common
parent node (Steps 2-3). Applying the mapping font, which is defined in Defi-
nition 4, to calculate the similarity of two given concepts (Step 4).

2.2. Syntax Similarity between Words with the Same Core

In reality, there are several words with the same original core word, but not all
of them are always included in an ontology. In order to measure the semantic
similarity between these words (called the core semantic similarity), we include
an additional concept.

Definition 5. The syntax distance between a word w1 and its original core
word w0, denoted as d(w1, w0), is the total number of characters that may be
added (or deleted) from the word w1 to become the original core word w0.
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Algorithm 1 Ontology-based semantic similarity
Input: two concepts c1 andc2 on an ontology
Output: the ontology-based semantic similarity between c1 and c2:
OntS(c1 , c2)

1: c0 ← the common parent node of c1 and c2

2: l1 ← L(c1, c0)
3: l2 ← L(c2, c0)
4: OntS(c1, c2)← font(l1, l2)
5: return OntS(c1, c2)

As a consequence, the syntax distance between two words w1 and w2, which
have the same original core word w0 /∈ {w1, w2}, is the total distance from each
of them to the common core word: d(w1, w2) = d(w1, w0) + d(w2, w0). We
assume that:

Assumption 2. Let wi and wj be two words, then:

(i) If two words are identical, their distance is 0. It means that d(wi, wi) = 0
with ∀i. Then their syntax similarity is maximal, which could be nor-
malised as 1;

(ii) If two words have no any original core word, their syntax distance is
maximal d(wi, wj) = ∞. If wi is totally different from wj, then their
syntax similarity is minimal, which could be normalized as 0;

(iii) The longer the syntax distance from each of them to the original core
word is, the less syntax similarity they have.

Let w0 be the original core word of two words w1 and w2, we define a syntax
similarity between w1 and w2 as follows:

Proposition 3. Let fsyn : �+ × �+ → [0, 1] be a pre-similar function. The
syntax similarity between words w1 and w2 determined by the formula

ssyn(w1, w2) = fsyn(d(w1, w0), d(w2, w0))

is a similar measure.

Estimating the syntax similarity is presented in Algorithm 2. First of all,
finding the original core word of the two given words (Step 1), then calculating
the distance between each one to their original core word (Steps 2-3). Lastly,
applying the mapping fsyn, defined in Proposition 3, to calculate the similarity
of two given words (Step 4).
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Algorithm 2 Syntax similarity
Input: two words w1 and w2 having an original core word
Output: the syntax similarity between w1 and w2: SynS(w1 , w2)

1: w0 ← the original core word of (w1, w2)
2: d1 ← d(w1, w0)
3: d2 ← d(w2, w0)
4: SynS(w1 , w2)← fsyn(d1, d2)
5: return SynS(w1 , w2)

2.3. Transitive Semantic Similarity

Let c1, c2 and c3 be concepts, in which only c2 and c3 belong to the same
ontology and c1 and c2 shares the same core word. Then the relatedness relation
between c1 and c3 is called a transitive semantic relation. We assume that:

Assumption 3. Let c1, c2 and c3 be three concepts or words in which only c2

and c3 are defined in an ontology, c1 has the same core original syntax with c2,
then:

(i) While there is no definition of c1 in ontology, this means that there is
no semantic relation between c1 and c3 on the ontology, so the transitive
semantic matching of c1 and c3 must be not bigger than the semantic
matching between c2 and c3;

(ii) The higher the core word similarity between c1 and c2 is, the higher the
transitive semantic similarity between c1 and c3 via c2 is;

(iii) The higher the semantic similarity between c2 and c3 is, the higher the
transitive semantic similarity between c1 and c3 via c2 is;

Definition 6. A function ftran : �+ × �+ → [0, 1] is a transitive similar
function, denoted tran-sim, iff it satisfies the following conditions:

(i) 0 � ftran(u, v) � v;

(ii) ftran(u1, v) � ftran(u2, v) if u1 � u2;

(iii) ftran(u, v1) � ftran(u, v2) if v1 � v2.

It is easy to prove the following proposition:

Proposition 4. The following functions are tran-sim functions:

(i) f(x, y) = y;

(ii) g(x, y) = x ∗ y;
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(iii) h(x, y) = a∗min(x,y)+b∗y
a+b a, b ∈ N∗;

And the transitive semantic distance is defined as follows:

Definition 7. Let c1, c2 and c3 be concepts, in which only c2 and c3 belong
to the same ontology and c1 and c2 shares the same core word. Suppose that
ftran : �×� → [0, 1] is a tran-sim function, ssyn(c1, c2) is the syntax similarity
on the same core word between c1 and c2, sont(c2, c3) is the semantic similarity
on ontology between c2 and c3. The transitive semantic similarity between
concepts c1 and c3 via concept c2 is determined by the following formula:

stran(c1, c2, c3) = ftran(ssyn(c1, c2), sont(c2, c3))

It is easy to prove the following proposition.

Proposition 5. Suppose that c1 has many concepts in core word relations
C = {c′1, c′2, ..., c′n} and all c′i ∈ C have semantic similarity on an ontology
with c3. The transitive semantic similarity between c1 and c3 defined by the
following formula:

stran(c1, c3) = Maxc′i∈C{ftran(ssyn(c1, c
′
i), sont(c′i, c3))} (1)

is a similar measure.

The algorithm of estimating the transitive semantic similarity is presented
in Algorithm 3. For all concepts ci having the same original core word with
w and it is also defined in the same ontology with c, we calculate the syntax
similarity between w and ci (Step 2), then calculate the ontology-based seman-
tic similarity between ci and c (Steps 3), and then apply the mapping ftran,
defined in Definition 7, to calculate the transitive semantic similarity of w and
c via ci (Step 4). The final transitive semantic similarity between w and c is
determined as the maximal value in all the intermediate values via ci (Step 6)

2.4. General Semantic Similarity between Two Concepts

Let c1 and c2 be two words or concepts. In order to measure their semantic
similarity in general, we consider the following cases:

• If c1 and c2 are both in the same ontology, then their general semantic
similarity is their ontology-based semantic similarity defined in Definition
4;

• If either c1 or c2 is in an ontology, other is not, their general semantic
similarity is their transitive semantic similarity defined in Definition 7;

• If neither c1 nor c2 is in an ontology, we consider as they have not any
semantic relation;

The algorithm to estimate the general semantic similarity between two
words or concepts is presented in Algorithm 4.
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Algorithm 3 Transitive semantic similarity
Input: a word w and a concept c in an ontology
Output: the transitive semantic similarity between w and c: TranS(w, c)

1: for all concept ci in the same ontology with c, and ci has an original
core word with w do

2: ssyn ← SynS(w, ci)
3: sont ← OntS(ci, c)
4: s(w, c, ci)← ftran(ssyn, sont)
5: end for
6: TranS(w, c)←Max{s(w, c, ci)} ∀ci

7: return TranS(w, c)

Algorithm 4 General semantic similarity
Input: two words or concepts c1 and c2

Output: the general semantic similarity between c1 and c2: GeneralS(c1 , c2)

1: if c1 and c2 are in the same ontology then
2: GeneralS(c1 , c2)← OntS(c1, c2)
3: else
4: if c1 is in an ontology then
5: GeneralS(c1, c2)← TranS(c2, c1)
6: else
7: if c2 is in an ontology then
8: GeneralS(c1 , c2)← TranS(c1 , c2)
9: else

10: GeneralS(c1 , c2)← 0
11: end if
12: end if
13: end if
14: return GeneralS(c1, c2)

3. Semantic Similarity between Two Sets of Con-
cepts

3.1. Semantic Similarity between a Concept and a Set of
Concepts

Let c and C = {c1, c2, ..., cn} be a concept and a set of concepts, respectively.
In order to measure the semantic similarity between the concept c and set C,
we assume that:
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Assumption 4. Let c and C = {c1, c2, ..., cn} be a concept and the set of
concepts, respectively. Then:

(i) If C has only one element which is identical with c, i.e., C = {c}, then
the similarity between c and C is maximal, which could be normalised as
1;

(ii) The semantic similarity between c and C must not lower than the min-
imal semantic similarity between c and each concept ci ∈ C, and it also
must not higher than the maximal semantic similarity between c and each
concept ci ∈ C;

(iii) The higher the semantic similarity between c and each concept ci ∈ C is,
the higher the semantic similarity between c and C is;

Definition 8. f : �n → [0, 1] is a semantic similar function between a con-
cept and a set of concepts , denoted single-sim, iff it satisfies the following
conditions:

(i) f(1n) = 1;

(ii) min(x1, x2, ..., xn) � f(x1 , x2, ..., xn) � max(x1, x2, ..., xn)

(iii) f(x1, .., xi, ..., xn) � f(x1 , ..., x
′
i, ..., xn) if xi � x′

i i = 1, ..., n

It is easy to prove the following proposition.

Proposition 6. The following functions are single-sim functions:

(i) f(x1, x2, ..., xn) = min(x1, x2, ..., xn)

(ii) g(x1, x2, ..., xn) = max(x1, x2, ..., xn)

(iii) h(x1, x2, ..., xn) = average(x1 , x2, ..., xn)

(iv) t(x1, x2, ..., xn) =
∑n

i=1 wi ∗ xi, where wi ∈ [0, 1] is the weight of xi

Let s(c, ci) be the general semantic similarity between c and ci ∈ C, defined
in Algorithm 4. Then the semantic similarity between single concept c and a
set of concepts C = {c1, c2, ..., cn} is defined as follows:

Definition 9. Given a concept c and a set of concepts C = {c1, c2, ..., cn} and
a single-sim function fsingle : �n → [0, 1]. The semantic similarity between a
concept c and a set of concepts C = {c1, c2, ..., cn} is determined by the formula:

Ssingle−sim(c, C) = fsingle(s(c, c1), s(c, c2), ..., s(c, cn)).

The algorithm of estimating the semantic similarity between a concept c
and a set of concepts C is presented in Algorithm 5. For all concepts ci ∈ C,
we calculate the general semantic between c and ci (Step 2), then apply the
mapping fsingle, defined in Definition 9, to calculate the semantic similarity c
and set C (Step 4)
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Algorithm 5 Semantic similarity between a single concept and a set of con-
cepts
Input: a word or concepts c and a set of concepts C = {c1, c2, ..., cn}
Output: the semantic similarity between c and set C: SingleS(c, C)

1: for all concept ci in the C do
2: s(c, ci)← GeneralS(c, ci)
3: end for
4: SingleS(c, C) ← fsingle(s(c, c1), s(c, c2), ..., s(c, cn))
5: return SingleS(c, C)

3.2. Semantic Similarity between Two Sets of Concepts

Suppose that C = {c1, c2, ..., cn} and C ′ = {c′1, c′2, ..., c′m} are two sets of con-
cepts and C∗ = C ∩C ′ = {c∗1, c∗2, ..., c∗k}, 0 � k � Min(n, m) is the intersection
set of C and C ′. In order to measure the semantic similarity between two sets
C and C ′, we make use of the following assumptions:

Assumption 5. Assumptions of two set similarity

(i) If C and C ′ are identical, then their semantic similarity is maximal,
which could be normalised as 1;

(ii) The semantic similarity between C and C ′ is equal to those between C ′

and C. It means that the relation is symmetric;

(iii) The more the size of C∗ is big, the more the semantic similarity between
C and C ′ is high;

(iv) The higher the semantic similarity between each element ci ∈ C, ci /∈ C∗

and set C ′ is, the higher the semantic similarity between C and C ′ is;

(v) The higher the semantic similarity between each element c′i ∈ C ′, c′i /∈ C∗

and set C is, the higher the semantic similarity between C and C ′ is;

Definition 10. fset : �n → [0, 1] is a semantic similar function between two
sets of concepts iff it satisfies the following conditions:

(i) fset(k) = 1 for all k, 0 � k � min(n, m)

(ii) fset(k1, x1, .., xi, ..., xn) � fset(k2, x1, .., x
′
i, ..., xn) if k1 � k2

(iii) fset(k, x1, .., xi, ..., xn) � fset(k, x1, .., x
′
i, ..., xn) if xi � x′

i for all i =
1, .., n

Proposition 7. The following functions are set-sim functions:
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(i) fset(k, x1, x2, ..., xn) = k+min(x1,x2,...,xn)
k+1

(ii) fset(k, x1, x2, ..., xn) = k+max(x1,x2,...,xn)
k+1

(iii) fset(k, x1, x2, ..., xn) = k+average(x1,x2,...,xn)
k+1

(iv) fset(k, x1, x2, ..., xn) = k+
∑ n

i=1 wi∗xi

k+1 , where wi is the weight of xi

Let Ssingle−sim(ci, C
′) be the semantic similarity between each single con-

cept ci ∈ C and set C ′, defined in Definition 9. Then the semantic similarity
between two sets of concepts C = {c1, c2, ..., cn} and C ′ = {c′1, c′2, ..., c′m} is
defined as follows:

Definition 11. Suppose C = {c1, c2, ..., cn} and C ′ = {c′1, c′2, ..., c′m} are two
sets of concepts, C∗ = C ∩ C ′ = {c∗1, c∗2, ..., c∗k}, 0 � k � Min(n, m) is the
intersection set of C and C ′ and fset : �n+1 → [0, 1] is a set-sim function. The
semantic similarity between two sets C and C ′ is determined by the formula:

Sset(C, C ′) = fset(k, Ssingle−sim(c1, C
′), Ssingle−sim(c2, C

′), ..., Ssingle−sim(cn, C ′))

The algorithm of estimating the semantic similarity between two sets of
concepts C and C ′ is presented in Algorithm 6. First, constructing the in-
tersection set C∗ of two given sets (Step 1) and calculating its size (Step 2),
and then for each element ci of C, calculating the semantic similarity between
concept ci and set C ′ by applying the formulas in Definition 9 (Step 4). Lastly,
applying the mapping fset, defined in Definition 11 to calculate the semantic
similarity of two given sets (Step 6).

Algorithm 6 Semantic similarity between two sets of concepts
Input: two sets of concepts C = {c1, c2, ..., cn} and C ′ = {c′1, c′2, ..., c′m}
Output: the semantic similarity between C and set C ′: SetS(C, C ′)

1: C∗ ← C ∩ C ′

2: k← ‖C∗‖
3: for all concept ci in the C do
4: S(ci, C

′)← SingleS(ci , C
′)

5: end for
6: SetS(C, C ′)← fset(k, S(c1, C

′), S(c2, C
′), ..., S(cn, C ′))

7: return SetS(C, C ′)
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4. Discussion & Related works

Paolucci et al. [5] proposed a method for estimating the semantic similar-
ity between descriptions of advertised and requested Web services. This al-
gorithm distinguishes four types of semantic matching based on DAML-S - a
DAML-based language for service description: exact if required concept is equal
advertised concept; plug-in if advertised concept subsumes required concept;
subsumes if required concept subsumes advertised concept; and fail if there is
no semantic relation between required and advertised concepts. It is clear that
this method is compatible with our model: These four kinds of matching are
completely included in our function to estimate the ontology-based semantic
similarity which is defined in Definition 4.

Although this method is good in distinguishing the main kinds of matching,
it is inconvenient in applying. First, it does not make clear in the case that two
concepts are plug-in or subsumes; intuitively, if they are direct parent - child,
then their similarity must be higher than in the case they are grandparent
- grandchildren. Second, this method does not consider the case that two
concepts have the same parent or grandparent; they must have a semantic
relation, but in this method, they are in the kind of fail. Third, this method
enables only to compare two concepts in an ontology, if one of them is not
defined in the ontology, we cannot compare them. Fourth, this method does
not enable to compare the semantic similarity of two set of concepts, which
intuitively appears very frequent in the reality.

Ludwig et al. [4] distinguished three types of matching based on the work
of Paolucci et al. [5] in the context of semantic Web service matching: Pre-
cise match, the service provides the requested functionality or more; Partial
match, the service is capable of providing part of the requested functionality;
Mismatch, the service is not capable of providing the requested functionality.
And the match scores are 0 represents a mismatch, 1 represents a precise match
and a value in-between represents a partial match. This method is clearly com-
patible with our model, but it is much more simple than ours because of the
same reasons with method of Paolucci et al. [5].

Wang et al. [7] has a big improvement from the method of Paolucci et al.
[5]. They also considered the distance between concepts on an ontology (called
semantic distance), and the other kind of semantic relation between concepts
that missed in method of Paolucci, such as the case that two concepts have
the same parent or the same root. Their model is considered as a particular
instance of ours. Operators given in their model are concrete, while ours is a
general model with only the constraints on them. Their model is still limited
in one ontology since it cannot measure the semantic distance between two
concepts if one of them is not defined in the same ontology. Moreover, this
model does not enable to measure the semantic distance between two sets of
concepts yet.
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Another approach is that of D. Lin [2] whose idea is to measure the similarity
between any two objects based on information-theoretic approach. Their model
enables to measure the similarity between two any objects: values, vectors,
words, taxonomy objects (this is applied only on a taxonomy structure such as
WordNet, not on ontology) and most interesting is to measure also similarity
between ordinal values. This model is very closed and compatible with ours
except that this model is strictly based on information-theoretic definition with
probability principle, our model is flexible with any kind of operators as long
as they satisfy the constraints defined in our general model.

5. Conclusions

In this paper, we present a mathematical model for estimating or calculating
the semantic similarity at two levels. First, it enables to estimate the semantic
similarity between two concepts which are either defined in an ontology, or only
one of them is defined in an ontology. The estimation is based on their semantic
relation on ontology, or their syntax relation or both of them. Second, it enables
to estimate the semantic similarity between two sets of concepts, which is also
based on the semantic similarity between the individual concepts of the two
given sets.

Our model is considered as a generalization of the proposed similarity com-
putational models. At each step of estimation, instead of applying a particular
function, we generate them as some series of functions satisfying the constraints
defined by the model. This makes our model more flexible in developing. It
means that the developers could choose their own operators and functions from
their special domain as long as they satisfy the constraints defined in our ap-
proach.

However, this model is currently limited at estimating the semantic similar-
ity between two sets of concepts which have not any constraints on the order
of elements. In the future work, we will consider of estimating the semantic
similarity of two ordered sets of concepts and/or those between two sentences.
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