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Abstract

In this paper, the symbol-pair distances of all repeated-root negacyclic
codes of length 14 are obtained. As an application, all MDS symbol-pair
negacyclic codes of length 14 over finite field F7m are established.

1. Introduction

In [1], Shannon showed that good codes exist, gave birth to information theory
and coding theory. Although its origins is to solve the problem about reliable
communication in an engineering problem, the subject has developed by using
more and more mathematical techniques. Cyclic codes are the most studied of
all codes, since their rich algebraic structures and practical implementations.
Moreover, cyclic codes can build blocks for many other codes, such as BCH,
Kerdock, Preparata and Justesen codes. Negacyclic codes as a direct gener-
alization of cyclic codes, they also have rich algebraic structure and can be
efficiently encoded using shift registers, have attracted remarkable attention
for the last half of the century.

Let Fpm be the finite field of order pm, where p is an odd prime. Nega-
cyclic codes of length n over Fpm are defined by the ideals〈g(x)〉 of quotient
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ring Fpm

〈xn+1〉 , where the generator polynomial 〈g(x)〉 is the monic polynomial of
least degree in the code, and is a divisor of xn +1. In fact, all previous studies,
most researcher focus their attention on the situation that gcd(n, p) = 1. This
is equivalent to say that generator polynomial g(x) has no repeated irreducible
factors, these codes are called simple-root negacyclic codes. Instead, when
gcd(n, p) = n, i.e., generator polynomial g(x) has repeated roots in an exten-
sion filed. We called these codes are repeated-root codes, which were first inves-
tigated in the 1990s by Castagnoli in [7] and Van Lint in [37]. In these papers,
the authors have shown that repeated-root cyclic codes cannot be asymptoti-
cally better than simple-root cyclic codes. But, there still exist a few optimal
such codes (see, for example, [12 14]), which encourages many researchers to
study the class of codes. The reader can refer to [16, 17, 18, 5, 24, 11, 12].

Let Σ be an alphabet of size q, whose elements are called symbols. Suppose
that x = (x0, x1, · · · , xn−1) is a vector in Σn, in [8], Cassuto and Blaum defined
the symbol-pair vector of x as

πsp(x) = [(x0, x1), (x1, x2), · · · , (xn−2, xn−1), (xn−1, x0)] ∈ (Σ2)n. (1)

Two pairs (c, d) and (e, f) are distinct if c �= e or d �= f , or both. For any
two vectors x and y, the symbol-pair distance between x and y is defined
as dsp(x, y) = dH(πsp(x), πsp(y)), where dH denotes the usual Hamming dis-
tance. Accordingly, if the pair (c, d) �= (0, 0), we say wtH(c, d) = 1, otherwise,
wtH(c, d) = 0. Then the symbol-pair weight of a vector x is defined as

wtsp(x) = wtH(πsp(x)) =
∣∣∣{i | (xi, xi+1) �= (0, 0), 0 ≤ i ≤ n − 1, xn = x0}

∣∣∣.
A q-ary code C of length n over Σ can be regard as a nonempty subset

of Σn. Then the minimum symbol-pair distance of a code C is defined to be
dsp(C) = min(dsp(c1, c2) | c1, c2 ∈ C, c1 �= c2). Clearly, if C is a linear pair
code, the symbol-pair weight and minimum symbol-pair distance are the same,
that is to say, dsp(C) = min(wtsp(c)|c �= 0, c ∈ C).

In [8, 9], Cassuto and Blaum has shown that the symbol-pair codes are
designed to protect against pair errors in symbol-pair read channels, and a
symbol-pair code C can correct t pair-errors if and only if dsp > 2t + 1, where
dsp is the minimum pair-distance of C. So the minimum pair-distance is one
of the important parameters of a symbol-pair code. For any code C of length
n with 0 < dH < n, a simple but important connection between dH and dsp

is given in [8]: dH + 1 ≤ dsp ≤ 2dH. Later on, in [10], Cassuto and Litsyn
have shown that for any cyclic code C of length n with Hamming distance dH,
if the generator polynomial g(x) of C has at least dH roots in the splitting
field of xn − 1, then the symbol-pair distance of C is at least dH + 2. In
addition, in [10], they proved that if the length n of cyclic code is prime, and
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the generator polynomial g(x) of C has at least m roots in the splitting field
of xn − 1, and dH ≤ min{2m − n + 2, m − 1}, then the symbol-pair distance
of C is at least dH + 3. Recently, in [38], Yaakobi et al. considered the lower
bound of binary cyclic code and showed the result: for any linear cyclic code
of dimension greater than one with a minimum Hamming distance dH, the
symbol-pair distance is at least dH +�dH

2
�.

It is well known for any fixed code length n and dimension k, maximum
distance separable(MDS) code has the largest minimum distance, i.e., they have
the best possible error-correction capability. Thus, how to construct MDS code
always a hot topic in coding theory. As a generalization of MDS codes, MDS
symbol-pair codes also have the best possible error-correction capability. More
recently, in[15], Chee et al. established singleton Bound for symbol-pair codes
as follows: Let 2 ≤ dsp ≤ n, then for any symbol-pair code C of length n with
size M and minimum pair-distance dsp over Fq , M ≤ qn−dsp +2. If the equality
hold then the symbol-pair code C is called an optimal code with respect to
Singleton bound, or MDS symbol-pair code. After establishing the Singleton
Bound, a lot of work focus on how to construct MDS symbol-pair codes(see,
for example, [15, 14]). But a few work has been done on how to determine the
symbol-pair distance of some classes of linear code as it is generality difficult
to determine. In [4], Dinh et al. computed the symbol-pair distance of all
constacyclic codes of length 5 over F7m . As an application, they obtained a
lot of MDS symbol-pair codes. Motivated by [4], in this paper, we get the
symbol-pair distance of all negacyclic codes of length 14 over F7m and obtained
numerous symbol-pair codes. Moreover, we find that our result are also suitable
for all constacyclic codes of length 14 over F7m .

The remainder of the paper is organized as follows. Section 2 recalls some
preliminary results. In Section 3, we study the symbol-pair distance of nega-
cyclic codes of length 14. In Section 4, we give the all MDS symbol-pair codes
of length 14.

2. Preliminaries

In this Section, we state some basic fact about finite ring and constacyclic codes.
A principal ring is a ring in which each ideal generated by a single element. A
chain ring is a principal ring such that the ideals are linearly orders under set
theoretic containments. Let R be a finite ring. An element r ∈ R is said to
be nilpotent with nilpotency index l if rl = 0 and l is the least positive integer
with respect to this property. It follows that if R is a finite commutative chain
ring, then there is an element γ such that γ generator of the unique maximal
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ideal of R. Hence, the ideals of R are 〈γi〉 and they form a chain:

R = 〈γ0〉 � 〈γ1〉 � · · · � 〈γl−1〉 � 〈γl〉 = 〈0〉.

Let p be an odd prime, m be a positive integer, and Fpm be a finite field.
A code C of length n over Fpm is a nonempty subset of Fn

pm . An [n, k]-linear
code C over the finite field F7m is a k-dimensional linear subspace of Fn

pm .
Moreover, For a nonzero element λ of F7m , if (c0, c1, · · · , cn−1) ∈ C implies
(λcn−1, c0, · · · , cn−2) ∈ C, then C is called a λ-constacyclic code. It is well
known that any constacyclic code C of length n over F7m corresponds to an
ideal of Fpm [x]/(xn + λ) and it can be expressed as C = (g(x)), where g(x) is
monic and has least degree in the code. In the case λ = −1, those λ-constacyclic
codes are called cyclic codes, and when λ = 1, such λ-constacyclic codes are
called negacyclic codes. From that, negacyclic codes of length 14 over F7m

correspond to the ideals of the finite ring

R1 =
Fpm [x]

〈x10 + 1〉 .

Clearly, R1 is a principal ideal ring, whose ideals are generated by factors
of x10 + 1. In [3], the authors have shown that the polynomial x2 + 1 ∈ Fpm [x]
is irreducible if and only if pm ≡ 4k+3 for some integer positive m (see Lemma
7.8). Hence, if pm ≡ 3 (mod 4), then the monic divisors of x10 +1 = (x2 +1)ps

are the set {x2 + 1)i : 0 ≤ i ≤ ps}. Therefore, R1 is a chain ring, whose
maximal ideal is (x2+1). Similarly, If pm ≡ 1 (mod 4), then the monic divisors
of x10 + 1 = (x − γ)ps

(x + γ)ps

are the set {(x − γ)i(x + γ)j : 0 ≤ i, j ≤ ps},
where γ ∈ Fpm such that γ2 = −1. Therefore, R1 is a principal ideal ring, but
not a chain ring, whose maximal ideal is (x − γ) or (x + γ).

The following is well known fact about R1.

Proposition 1. (Theorem 3.2 of [16]) Let p be an odd prime, and m be a
positive integer.

(a) If pm ≡ 1 (mod 4), negacyclic codes of length 14 over F7m are 〈(x−γ)i(x+
γ)j〉 ⊆ R1, where 0 ≤ i, j ≤ ps. Each code Ci,j = 〈(x − γ)i(x + γ)j 〉
contains pm(10−i−j) codewords, its dual is C⊥

i,j = 〈(x−γ)ps−i(x+γ)ps−j〉.
(b) If pm ≡ 3 (mod 4), negacyclic codes of length 14 over F7m are 〈(x2+1)i〉 ⊆

R1, where 0 ≤ i ≤ ps. Each code Ci = 〈(x2 + 1)i〉 contains p2m(ps−i)

codewords, its dual is C⊥
i = Cps−i = 〈(x2 + 1)ps−i〉.

Given two codewords x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Fn
pm ,

their inner product is defined as:

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1.
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Then x, y are called orthogonal if x · y = 0. For a linear code C over Fpm ,
its dual code C⊥ is the set of n-tuples over Fpm that are orthogonal to all
codewords of C, i.e.,

C⊥ = {x ∈ Fn
pm | x · y = 0, ∀y ∈ C}.

In particular, a code C is called self-orthogonal if C ⊆ C⊥ and it is called
dual-containing if C⊥ ⊆ C. Moreover, it is called self-dual if C = C⊥.

Then, making use of Proposition 1, it is straightforward for us to get the
necessary and sufficient conditions for negacyclic codes of length 14 over Fpm

to be self-dual, self-orthogonal, dual containing.

Corollary 2. Let C be a nonzero negacyclic code of length 14 over Fpm . Then
C = 〈(x2 + 1)i〉 ⊆ R1 for i ∈ {0, 1, . . . , 7},
(a) C is dual containing if and only if and 0 ≤ i ≤ 7/2.

(b) C is self-orthogonal if and only if ps/2 ≤ i ≤ 7.

(c) C is self-orthogonal do not exist.

If pm ≡ 1 (mod 4), i.e., C = 〈(x − γ)i(x + γ)j 〉 ⊆ R1 for 0 ≤ i, j ≤ 7,

(a) C is dual containing if and only if 0 ≤ i, j ≤ 7/2.

(b) C is self-orthogonal if and only if 7/2 ≤ i, j ≤ 7.

(c) C is self-dual if and only if i + j = 7.

In the next section, we will use the concept of coefficient weight of polyno-
mials, which was given in [19]: Let f(x) = anxn + an−1x

n−1 + · · ·+ a1x + a0

be a polynomial with degree n, the coefficient weight of f , is defined as

cw(f) =

{
0, if f is a monomial
min{|i − j| : ai �= 0, aj �= 0, i �= j}, otherwise.

Obviously, cw(f) is the smallest distance among exponents of nonzero terms of
f(x). Base on this fact, we have the following lemma.

Lemma 3. For any two nonzero polynomial f(x) and g(x), if f(x) and g(x)
satisfied one of the following condition

• 0 ≤ deg(g(x)) ≤ cw(f(x)) − 2, and deg(f(x)) + deg(g(x)) ≤ n − 2;

• 0 ≤ deg(g(x)) = cw(f(x)) − 1, and deg(f(x)) + deg(g(x)) = n − 1.
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Then, by definition,

wtsp(f(x) g(x)) = wtH(f(x)) · wtsp(g(x)).

The condition deg(f(x)) + deg(g(x)) ≤ n − 2 ensures that f(x)g(x) does
not represent a codeword of length n that has the first and last entries being
nonzero, otherwise, wtH(f(x))·wtsp(g(x)) may be greater than wtsp(f(x) g(x)).
The conditions 0 ≤ deg(g(x)) = cw(f(x))−1, and deg(f(x))+deg(g(x)) = n−1
ensures that a codeword of length n can be partition into some same short
codes, otherwise, wtH(f(x)) ·wtsp(g(x)) may be less than wtsp(f(x) g(x)). This
can be explained by the following two examples.

Example 4. Let f(x) = x6 + 1, and g(x) = x4 + x2 + 1. Then cw(f(x)) = 6,
deg(g(x)) = 4, wtH(f(x)) = 2, wtsp(g(x)) = 6, and f(x)g(x) = x10 +x8 +x6 +
x4+x2+1. If the code of length is n = 11, then f(x)g(x) represents the codeword
(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1), and wtsp(f(x)g(x)) = 11 < wtH(f(x)) · wtsp(g(x)).

Example 5. Let f(x) = x6 + 1, and g(x) = x5 + x2 + 1. Then cw(f(x)) = 6,
deg(g(x)) = 5, wtH(f(x)) = 2, wtsp(g(x)) = 5, and f(x)g(x) = x11 + x8 +
x6 + x5 + x2 + 1. If the code of length is n = 13, then f(x)g(x) represents the
codeword (1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0), and wtsp(f(x)g(x)) = 11 > wtH(f(x))·
wtsp(g(x)).

3. Symbol-pair distance of negacyclic codes of

length 14 over F7m

As discussed in Section 3, for the sake of narrative convenience, we denote
negacyclic code 〈(x2+1)i〉 by Ci for i = 0, 1, . . . , ps, and 〈(x+γ)i(x−γ)j 〉 by Ci,j

for i, j ∈ {0, 1, . . . , 7}. Their symbol-pair distance are denoted by dsp(Ci) and
dsp(Ci,j), respectively. For any codeword c(x) ∈ Ci or Ci,j, the Hamming weight
and symbol-pair weight are denoted by wtH(c(x)) and wtsp(c(x)), respectively.
In [3], the author have considered the Hamming distance of Ci.

Proposition 6. (Theorem 7.9 of [3]) The negacyclic codes of length 14 over
F7m are of the form Ci = 〈(x2+1)i〉 for i = 0, 1, · · · , ps. Moreover, its Hamming
distance dH(Ci) is determined by:

dH(Ci) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if i = 0
(β + 1)pk1 , if 7 − 71−k1 + β7−k1 + 1 ≤ i ≤ 7 − 71−k1 + (β + 1)7−k1

where 0 ≤ β ≤ 7, and 0 ≤ k1

0, if i = 7.
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Base on the Hamming distance, we can show the symbol-pair distance of Ci

as follows.

Theorem 7. The symbols defined as Proposition 6. Then symbol-pair distance
of Ci is determined by:

dsp(Ci) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, if i = 0
2(β + 1)7k1, if 7 − 71−k1 + β7−k1 + 1 ≤ i ≤ 7 − 71−k1 + (β + 1)7−k1

where 0 ≤ β ≤ 5, and 0 ≤ k1

0, if i = 7.

Proof. Recall that

R1 = C0 ⊃ C1 ⊃ · · · ⊃ C6 ⊃ C7 = 〈0〉.
Clearly, dsp(C7) = 0, and dsp(C0) = 2. Furthermore, 2 = dsp(C0) ≤ dsp(C1) ≤
dsp(C2) ≤ · · · ≤ dsp(C6). Now, we consider the other cases.

Let c(x) be an arbitrary nonzero element of Ci. Then there exist a nonzero
element f(x) ∈ R1 such that c(x) = (x2 +1)if(x). By the Division Algorithm,
we can assume that deg(f) < 14− 2i − 1. Let f(x) be expressed as

f(x) = f0 + f1x + · · ·+ f�x
�,

where f0, f1, . . . , f� ∈ Fpm , and � = 14 − 2i − 1. Partition f(x) into two
polynomials f0(x) and f1(x), i.e., f(x) = f0(x) + f1(x), where f0(x) only
contains terms of even exponents f2lx

2l, and f1(x) only contains terms of odd
exponents f2l+1x

2l+1 , where l = 0, 1, · · · , 6 − i.
We consider the following 3 cases.

Case 1: f0(x) = 0. Then there are exactly coefficients f2j+1 is nonzero. We
have

wtH(c(x)) = wtH((x2 + 1)if(x)) = wtH

([
i∑

h=0

(
i

h

)
x2h

]
f1(x)

)
.

Thus, the nonzero terms of c(x) are 2h + 1 positions apart for h =
0, 1, · · · , ps − 1. It follows that wtsp(c(x)) = 2 wtH(c(x)) ≥ 2 dH(Ci).

Case 2: f1(x) = 0. Then there are exactly coefficients f2j is nonzero. Then

wtH(c(x)) = wtH((x2 + 1)if(x)) = wtH

([
i∑

h=0

(
i

h

)
x2h

]
f0(x)

)
.

So the nonzero terms of c(x) are 2h positions apart for h = 0, 1, · · · , ps−1.
Therefore, wtsp(c(x)) = 2 wtH(c(x)) ≥ 2 dH(Ci).
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Case 3: f0(x) �= 0 and f1(x) �= 0. Then

(x2 + 1)if(x) =(x2 + 1)if0(x) + (x2 + 1)if1(x).

Because the nonzero terms of (x2 + 1)if0(x) are 2k positions apart and
the nonzero terms of (x2 + γ)if1(x) are 2k + 1 positions apart for k =
0, 1, · · · , ps−1, then (x2 +1)if0(x) and (x2 +1)if1(x) do not contain any
term with same power of x. Therefore,

wtH((x2 + 1)if(x)) = wtH((x2 + 1)if0(x)) + wtH((x2 + 1)if1(x)).

Since (x2 + 1)if0(x) and (x2 + 1)if1(x) are nonzero element in Ci,

wtH((x2 + 1)if0(x)) ≥ dH(Ci) and wtH((x2 + 1)if1(x)) ≥ dH(Ci).

Hence, wtsp(c(x)) ≥ wtH((x2 + 1)if(x)) ≥ 2 dH(Ci).

Theorefore, for any c(x) ∈ Ci, wtsp(c(x)) ≥ 2 dH(Ci), implying dsp(Ci) ≥
2 dH(Ci). As dsp(Ci) ≤ 2 dH(Ci), making use of Proposition 6, the result
follows. �

Now, we consider the symbol-pair distance of negacyclic code Ci,j for i, j ∈
{0, 1, . . . , ps}. Obviously, if i = j = 0, then C0,0 = R1, and if i = j = ps,
then Cps,ps = {0}. For the remaining values of i, j, as the symmetries of all
the cases, without loss of generality, in the following of this section, we always
assume i ≥ j. If i = j, clearly, Ci,j = 〈(x + γ)i(x − γ)j 〉 = 〈(x2 + 1)i〉. In fact,
Theorem 7 gives the symbol-pair distance of Ci,j.

Proposition 8. If i = j for i ∈ {0, 1, · · · , 7}. Then symbol-pair distance of
Ci,j is determined by:

dsp(Ci,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, if i = 0
2(β + 1)7k1 , if 7 − 71−k1 + β7−k1 + 1 ≤ i ≤ 7 − 71−k1 + (β + 1)7−k1

where 0 ≤ β ≤ 5, and 0 ≤ k1

0, if i = 7.

4. Symbol-Pair negacyclic Codes of Length 14

over F7m

In [15], the authors introduced that the parameters of an [n, k, dsp] linear code
C over F7m satisfying dsp ≤ n−k+2, and if the equality hold then a symbol-pair
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code C is called an optimal code with respect to Singleton bound, or a maximum
distance separable (MDS) symbol-pair code. For any fixed symbol-pair code
length n and dimension k, MDS symbol-pair code has the largest minimum
distance, i.e., they have the best possible error-correction capability. Hence,
constructing MDS symbol-pair codes is significance in theory and practice.

In this section, we will determine all MDS symbol-pair negacyclic codes of
length 14. First of all, we consider the case pm ≡ 3 (mod 4).

Theorem 9. Let p be an odd prime, m be an interger, pm ≡ 3 (mod 4), then
the negacyclic codes of length 14 over F7m are of the form Ci = 〈(x2 + 1)i〉 for
i = 0, 1, · · · , 7. Moreover, Ci is a MDS symbol-pair code if and only if one of
the following conditions holds:

• If s = 1, then i = β + 1, for 0 ≤ β ≤ 7, in such case, dsp(Ci) = 2(β + 2).

Proof. For 0 ≤ i, j ≤ 7, by Proposition 1, we have |Ci| = pm(7−i−j), implying
the dimension of symbol-pair code Ci is 7 − i − j. By Singleton bound, Ci is a
MDS symbol-pair code if and only if i + j = dsp(Ci) − 2.

When i = j, the conditions for Ci,j is a MDS symbol-pair code have been
given by Theorem 9. So, we can give the result, directly.

• If s = 1, then i = j = β + 1, for 0 ≤ β ≤ 7, in such case, dsp(Ci) = 2(β + 2).
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