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Abstract

The paper shows that the approximate solution of the Van der Pol-
Duffing system with time delay subjected to the white noise can be found
by the second order stochastic averaging method. The stochastic system
with time delay is transformed into the stochastic non-delay equation in
Ito sense in accordance with the hypothesis that there are some slowly
varying processes. Then the higher order stochastic averaging method
is artfully applied to find the stationary probability density function for
the system. The analytical results are verified by numerical simulation
results.
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1 Introduction

Throughout the century, there has been a growing interest in the effects of noise
on dynamical systems with delays which are considered as stochastic delay dif-
ferential equations. Especially, in science and engineering we often experience
non-linear systems subjected to random excitations. In the case of no-time
delay, the stochastic averaging method, a versatile and powerful approximate
approach to random vibration problems of non-linear systems, is strongly in-
troduced. Originally initiated by Krylov and Bogoliubov and then developed
by Mitropolskii and extended as the higher order averaging method by Anh
[1,2,3,4], the stochastic averaging method was first extended by Stratonovich
in the field of random vibrations and mathematically tested by Khasminskii
[5,6]. By applying the stochastic averaging method, random systems can be
described in averaged Ito stochastic differential equations, whose solutions are
Markov processes. The stochastic averaging method is also applied in Carte-
sian coordinates by Anh et al [7] and Hao et al [8].
In the field of nonlinear oscillators, the Van der Pol-Duffing system is one of the
classes of systems that has caught researchers attentions. The basic method
to study this kind of system is the averaging method. Mitropolskii et al [9,10]
found the stationary density of the solution by the stochastic averaging method.
Anh [4] and Tinh [11] further worked out the stationary density of the solu-
tion in the higher order approximation. Zhu et al [12] and Kumar et al [13],
in practice, also applied a new stochastic averaging method to predict the re-
sponse of a Van der Pol- Duffing oscillator under both external and parametric
excitation of wide-band stationary random processes. Xu et al [14] investigated
the stability and control of two-dof coupled Duffing-Van der Pol systems under
stochastic Gaussian excitations.
In recent years, the Van der Pol oscillator with delayed feedback control has at-
tracted many researches. Mittropolskii et al [9] proposed approximate stochas-
tic systems for stochastic systems with delayed control feedback and proved
the theorems for this approximate method. Maccari [15] demonstrated that if
the vibration control terms are added, stable periodic solution with arbitrarily
chosen amplitude can be accomplished. Atay [16] investigated the effect of
delayed feedback on the classical van der Pol oscillator. Liu et al [17] applied
the stochastic averaging method for quasi-integrable Hamiltonian systems for a
Duffing Van der Pol oscillator with delayed linear feedback control subject to
additive Gaussian white noise excitation. Jin et al [18] proposed the stochas-
tic averaging method to investigate the response and stability for the dynamic
system with delayed feedback control and additive or multiplicative Gaussian
white noise. Hao and Anh [19] investigated the stationary probability den-
sity functions of the Duffing oscillator with time delay subjected to combined
harmonic and random excitation by the method of stochastic averaging and
equivalent linearization.
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In this paper, we consider the single degree of freedom (SDOF) Van der Pol-
Duffing system with time delay under additive white noise excitation

ẍ + ω2x − ε
[(

α− βx2
)
ẋ + γx3 + ςx (t − Δ) + ζẋ (t − Δ)

]
=

√
εσξt (1)

where ω > 0, γ > 0, α > 0, β > 0, σ > 0, ς, ζ are constants, ε and Δ are small
positive parameters, ξt is a Gaussian white noise process of unit intensity,

E [ξt] = 0, E [ξtξt+τ ] = δ (τ ) (2)

where E (·) denotes the mathematic expectation operator.
We study the response of the system (1) by the stochastic averaging method and
figure out the analytical expression of stationary probability density function
in higher approximation. Hence, the delay terms can be expressed in terms of
the system states without time delay and harmonic functions of delay first, and
then the system is transformed into Ito stochastic differential equations without
time delay, from which the averaged Ito equations are derived. In Section 2, the
stochastic averaging method is used to determine the averaged Ito stochastic
differential equations of the system for the general case; In section 3, we show
the response of the Van der Pol- Duffing system by applying the higher order
stochastic averaging method. Section 4 show numerical results. The paper
closes with some conclusions in section 5.

2 The stochastic averaging method

Let us study the SDOF system with time delay described by the autonomous
equation

d2x (t)
dt2

+ ω2x = εf (x, ẋ, xΔ, ẋΔ) +
√

εg (x, ẋ, xΔ, ẋΔ) ξt (3)

where ξt is a white noise of unit intensity, ε and Δ are small positive parameter,
ω > 0 is a constant, xΔ = x (t − Δ), ẋΔ = ẋ (t − Δ). Assuming that equation
(3) has a stationary response. Equation (3) may be considered as the following
system of stochastic differential equations in the Ito sense

dx = ẋdt

dẋ =
[−ω2x + εf (x, ẋ, xΔ, ẋΔ)

]
dt +

√
εg (x, ẋ, xΔ, ẋΔ) dBt (4)

where Bt is the standard Brownian motion. When ε = 0, the equation (3) has
the periodic solution

x = a (t) cos ϕ, ẋ = −a (t)ω sin ϕ, ϕ = ωt + θ (t) (5)
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In order to apply the stochastic averaging method, we transform (x, ẋ) to (a, θ)
by the change (5). Applying Ito’s rule, we can rewrite the system (4) as follows
(see [2])

da = ε

[
1

2aω2
g2cos2ϕ − 1

ω
f sin ϕ

]
dt −

√
ε

ω
g sinϕdBt,

dθ = ε

[
− 1

2aω2
g2 sin 2ϕ − 1

aω
f cos ϕ

]
dt −

√
ε

aω
g cos ϕdBt, (6)

where

f = f (x, ẋ, xΔ, ẋΔ) ,

g = g (x, ẋ, xΔ, ẋΔ) ,

x = a cos ϕ, ẋ = −aω sinϕ,

xΔ = a (t − Δ) cos [ω (t − Δ) + θ (t − Δ)] ,
ẋΔ = −a (t − Δ)ω sin [ω (t − Δ) + θ (t − Δ)] , (7)

and Bt is a standard Brownian motion.
From (6), we can see that ȧ and θ̇ depend on the small parameter ε so we can
assume that a (t) and θ (t) are slowly varying processes while the average value
of the instantaneous phase is a fast varying process. Thus, over one period
T = 2π

ω
we can replace a (t − Δ) and θ (t − Δ) by a (t) and θ (t), respectively.

The pair (a, θ) is an approximate two-dimensional diffusion process.
The Fokker-Planck (FP) equation for the density function of probability W (a, θ, t)
of system (6) is:

∂W

∂t
=ε

{
∂

∂a
(K1W ) +

∂

∂θ
(K2W )

}

ε

{
−1

2

[
∂2

∂a2
(K11W ) + 2

∂2

∂a∂θ
(K12W ) +

∂2

∂θ2
(K22W )

]}
(8)

where

K1 (a, ϕ) =
1

2aω2
g2cos2ϕ − 1

ω
f sin ϕ,

K2 (a, ϕ) = − 1
2aω2

g2 sin 2ϕ − 1
aω

f cos ϕ,

K11 (a, ϕ) =
1
ω2

sin2ϕg2 (a, ϕ) ,

K12 (a, ϕ) =
cosϕ sin ϕ

aω2
g2 (a, ϕ) ,

K22 (a, ϕ) =
cos2ϕ
a2ω2

g2 (a, ϕ) . (9)
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As known, solving the FP equation is a difficult problem. However, this prob-
lem is essentially simplified by using the averaging method. Averaging the FP
equation (8) we obtain the averaged equation FP for the probability density
function:

∂W

∂t
= ε

{
∂

∂a

(
K̄1W

)
+

∂

∂θ

(
K̄2W

)}

−ε

{
1
2

[
∂2

∂a2

(
K̄11W

)
+ 2

∂2

∂a∂θ

(
K̄12W

)
+

∂2

∂θ2

(
K̄22W

)]}
(10)

where the top line denotes the averaging in t.

f̄ =
1
2π

2π/ω∫
0

fdt =
1
2π

2π∫
0

fdϕ, (11)

If the stationary density W (a, θ) exists then it satisfies the equation

∂

∂a

(
K̄1W

)
+

∂

∂θ

(
K̄2W

)
=

1
2

[
∂2

∂a2

(
K̄11W

)
+ 2

∂2

∂a∂θ

(
K̄12W

)
+

∂2

∂θ2

(
K̄22W

)]
(12)

The solution of this equation should be non-negative and normalized. Since
the considered equation (3) is autonomous, the averaged FP equation (10),
written for the probability density function W (a, θ), if exists, corresponding to
the system (6), has the form

∂W

∂t
= ε

[
∂

∂a

(
K̄1 (a)W

)− 1
2

∂2

∂a2

(
K̄11 (a)W

)]
(13)

Therefore equation (12) becomes

∂

∂a

(
K̄1 (a)W

)
=

1
2

∂2

∂a2

(
K̄11 (a)W

)
(14)

with the initial condition is W (a, t|a0, t0). Solving (14) one gives the solution

W (a) =
C

K̄11 (a)
exp

⎧⎨
⎩
∫

2K̄1 (a)
K̄11 (a)

da

⎫⎬
⎭ (15)

where C is a normalization constant determined from the condition

2π∫
0

∞∫
0

W (a, ϕ) dadϕ = 1 (16)
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It is know that in many cases of interest the averaged FP equation (13) is not
sufficient for analysis of nonlinear terms in the original equation (3). Anh [4]
extended the classical averaging method to get the effect of nonlinear terms on
the stationary solution of the considered systems. Tinh [11] (pp. 59-60) showed
that higher order approximate solution is more accurate than first-order one.
For the given functions Kj (a, ϕ) , Kij (a, ϕ) , i, j = 1, 2, we define two operators
as follows

[Ki, Kij]L (W ) =
∂

∂a
(K1W ) +

∂

∂ϕ
(K2W )

− 1
2

[
∂2

∂a2
(K11W ) +

2∂2

∂a∂ϕ
(K12W ) +

∂2

∂ϕ2
(K22W )

]

[Ki, Kij] � (W ) =
∂K1

∂a
+

∂K2

∂ϕ
− 1

2
∂2K11

∂a2
− ∂K12

∂a∂ϕ
− 1

2
∂2K22

∂ϕ2

+
(

K1 − ∂K11

∂a
− ∂K12

∂ϕ

)
∂W

∂a
+
(

K2 − ∂K22

∂ϕ
− ∂K12

∂a

)
∂W

∂ϕ

− 1
2

{
K11

(
∂2W

∂a2
+
(

∂W

∂a

)2
)

+ 2K12

(
∂2W

∂a∂ϕ
+

∂W

∂a

∂W

∂ϕ

)

+ K22

(
∂2W

∂ϕ2
+
(

∂W

∂ϕ

)2
)}

.

Hence, the equation (8) can be written in the form

ω
∂W

∂ϕ
= −ε [Ki, Kij] L(W ) (17)

Given (3) is autonomous. Suppose that

Ki (a, ϕ, ε) = Kio (a, ϕ) + Ri1 (a, ϕ) ε + Ri2 (a, ϕ) ε2 + · · · , i = 1, 2 (18)

Then the approximate solution of (8) can be found in the form of

W ≈ W0 + εW1 + ε2W2 + ... (19)
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where

W0 (a) =
C

K̄11
exp

(∫
2
K̄10

K̄11
da

)
(20)

W1 (a, ϕ) = − 1
ω

∫
[Ki0, Kij]L (W0) dϕ = W0 (a) (W10 (a) + W11 (a, ϕ)) (21)

W2 (a, ϕ) = − 1
ω

∫
{[Ki0, Kij]L (W1) − [Ri1, 0]L (W0)} dϕ

= W0 (a) (W20 (a) + W22 (a, ϕ)) (22)

Wn(a, ϕ) = − 1
ω

∫ {
[Ki0, Kij]L (Wn−1) −

n−1∑
�=1

[Ri�, 0]L (Wn−1−�)

}
dϕ, n ≥ 3

(23)

where

W11 (a, ϕ) = − 2
ω

∞∑
n=1

1
n

{
[Ki0, Kij] � (ln W0 (a)) cosnϕ sin nϕ−

[Ki0, Kij] � (ln W0 (a)) sin nϕ cosnϕ
}

, (24)

W10 (a) =
∫ [

2K10W11

K̄11
− ∂

∂a
K11W11

− K11W11
1

W0 (a)
∂W0 (a)

∂a
− 2

∂R̄11

∂a
− 2R̄11

1
W0 (a)

∂W0 (a)
∂a

]
da,

(25)

From (19) to (25), we have the second order approximate stationary solution
of (8) in the form of

W = W0 (a) {1 + ε (W10 (a) + W11 (a, ϕ))} . (26)

3 The approximate solution of the stochastic

Van der Pol-Duffing system with time delay

Here we apply the stochastic averaging method in the preceding section on
studying the response of Van der Pol- Duffing system

ẍ + ω2x − ε
[(

α − βx2
)
ẋ − γx3 + ςxΔ + ζẋΔ

]
=

√
εσξt (27)

where α > 0, β > 0, ω �= 0, γ, ς, ζ, Δ are constants, ε is a small positive
parameter, ξt is white noise, xΔ = x (t − Δ), ẋΔ = ẋ (t − Δ). From (7) and
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(9) we have

K̄1 = −1
8
a3β +

κa

2
+

σ2

4aω2
,

K̄2 =
3a2γ

8ω
− η

2ω
,

K̄11 =
σ2

2ω2
, K̄12 = 0, K̄22 =

σ2

2a2ω2
, (28)

where

η = ς cosωΔ + ωζ sin ωΔ

κ = α + ζ cosωΔ − ςω−1 sin ωΔ. (29)

It is clear that the averaged FP equation (13) for the stationary density, if
exists, is a simple form

∂

∂a

(
K̄1W

)
=

1
2

∂2

∂a2

(
K̄11W

)
, (30)

Since K̄11 does not depend on a so, from (20), we can seek the first order
approximate solution for probability density for (27) as follows

W0 (a) = C0 exp
∫

2K̄1

K̄11
da = C0a exp

{
κω2a2

σ2
− ω2a4β

8σ2

}
(31)

where C0 determined from (16) is

C0 =
ω
√

2β

2π
√

πσ
exp

(
−2ω2κ2

σ2β

)[
1 + erf

(
ωκ

√
2

σ
√

β

)]−1

(32)

in which, erf (x) is the error function defined by

erf (x) =
2√
π

x∫
0

exp
(−t2

)
dt (33)

It is seen that the solution (31) corresponds to the case γ = 0 in (27) and does
not include the effect of the nonlinear term γx3. In this approximation, solution
(31) can be seen as a special case in [18] (p. 337). Now we seek the solution
of (17) in the form of (19). In order to find the second approximate solution
of (17), we apply the higher order stochastic averaging procedure. Calculating
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from (24) and (25) gives

W11 (a, ϕ) =
ωβa4 sin 4ϕ

64σ2

(
βa2 − 4κ

)− βa2 sin 2ϕ

32ωσ2

(
βω2a4 − 12σ2 − 4ω2κa2

)
− γa4 cos 4ϕ

64σ2

(
a2β − 4κ

)− a2 cos 2ϕ

16σ2

(
βa2 − 4κ

) (
γa2 − 2η

)
, (34)

W10 (a) = − a2

96σ2

(
a4γβ − 18a2γκ + 48ηκ

)
(35)

Thus, the second order approximate solution of (27) is

W1 (a, ϕ) = C1a exp
(

κω2a2

σ2
− ω2a4β

8σ2

)
{1 + ε [W10 (a) + W11 (a, ϕ)]} (36)

where C1 is a normalization constant.
We can see that if β = ς = ζ = 0 then (36) becomes the solution of the
equation in [2] (pp 384-385). In this situation, the nonlinear γx3 reduces the
mean square of the amplitude [4]. In general, the probability density function
at the second order approximation for the amplitude is

W (a) =

2π∫
0

W1 (a, ϕ) dϕ

=
C1πa

32σ2
exp

(
−ω2β

8σ2
a4 +

κω2

σ2
a2

)
.{

64σ2 − ε
(
8ηβa4 + 12γκa4 − 3γβa6 + 32ηκa2

)}
(37)

s Hence, using the second approximate solution, the effect of the nonlinear term
γx3 and delay parameter is obtained in the formulae from (36) to (37).

4 Numerical results

The mean-square response of equation (27) is obtained by

Ei

[
x2
]

=

2π∫
0

∞∫
0

a2cos2ϕ Wi (a, ϕ) dadϕ, i = 0, 1 (38)

where Wi (a, ϕ) is the stationary density function of (27). In the table below,
we consider the case where ε = 0.01, α = 1, β = 5, ω = 1, γ = 2, ς = 1, ζ = 1,
σ = 1.

1st approximation 2nd approximation
Δ Monte-Carlo simulation E0

(
x2
)

Error E1

(
x2
)

Error
0 0.8226 0.8374 1.798 0.8149 0.9370

0.1 0.79008 0.8025 1.5720 0.7815 1.0860
0.2 0.7452 0.7656 2.7350 0.7461 0.1180
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Table: The effect of delay parameter Δ on the mean-square response of
the Van der pol- Duffing oscillator obtained by Monte-Carlo simulation and by
higher-order stochastic averaging method.

The table shows that the relative error of the second order stochastic av-
eraging approximation is smaller than the error of the first order stochastic
averaging method when the delay parameter is small.

5 Conclusion

In the paper, the higher order stochastic averaging method is proposed to in-
vestigate the response for the stochastic Van der Pol- Duffing system with time
delay under additive Gaussian white noise. The analytical solution in second
order approximation of the stochastic Van der Pol- Duffing system is found
for the first time. This solution shows the effect of the nonlinear term γx3

which cannot be found by the original stochastic averaging method. Compari-
son results in the table above show that the higher order stochastic averaging
method is useful in investigating nonlinear systems with time delay under a
random excitation.
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