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Abstract

An interior-point trust-region algorithm for solving the general non-
linear programming problem is proposed. In the algorithm, an interior-
point Newton method with Coleman-Li scaling matrix is used. A trust-
region globalization strategy is added to the algorithm to insure global
convergence. A projected Hessian technique is used to simplify the trust-
region subproblems.

A Matlab implementation of the algorithm was used and tested against
some existing codes. In addition, four case studies were presented to test
the performance of the proposed algorithm. The results showed that the
algorithm out perform some existing methods in literature.
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1 Introduction

Various approaches have been proposed and used to solve the following general
nonlinear programming problem

minimize f(x)
subject to C(x) = 0,

a ≤ x ≤ b,
(1.1)

where f : �n → �, C : �n → �m, a ∈ {�⋃{−∞}}n, b ∈ {�⋃{+∞}}n,
m < n, and a < b. We assume that the functions f and C are at least twice
continuously differentiable.

The Lagrangian function associated with Problem (1.1) is given by

L(x, λ, μ, ν) = �(x, λ) − μT (x − a) − νT (b − x), (1.2)

where �(x, λ) = f(x) + λT C(x) and λ, μ, and ν are the Lagrange multiplier
vectors associated with the equality constraint C(x) = 0, and the inequality
constraints (x − a) ≥ 0 and (b − x) ≥ 0 respectively.

The first-order necessary conditions for a point x∗ to be a solution of prob-
lem (1.1) are the existence of multipliers λ∗ ∈ �m, μ∗ ∈ �n

+, and ν∗ ∈ �n
+,

such that (x∗, λ∗, μ∗, ν∗) satisfies

∇x�(x∗, λ∗) − μ∗ + ν∗ = 0, (1.3)
C(x∗) = 0, (1.4)
a ≤ x∗ ≤ b, (1.5)

and for all i corresponding to x(i) with finite bound, we have

μ
(i)
∗ (x(i)

∗ − a(i)) = 0, (1.6)

ν
(i)
∗ (b(i) − x

(i)
∗ ) = 0, (1.7)

In addition to that, for any i corresponding to x(i) with infinite bound the
corresponding μ

(i)
∗ or ν

(i)
∗ is zero.

Motivated by the strategy in [12], we define the diagonal scaling matrix
D(x) whose diagonal elements are given by

d(i)(x) =

⎧⎨
⎩

√
(x(i) − a(i)), if ∇x�(x, λ) ≥ 0 and a(i) > −∞,√
(b(i) − x(i)), if ∇x�(x, λ) < 0 and b(i) < +∞ ,

1, otherwise.
(1.8)

The scaling matrix D(x) was first introduced in [6] for unconstrained optimiza-
tion problem with simple bound and was used by [7], [12],[13].
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Using the scaling matrix D(x), the first-order necessary conditions (1.3)-
(1.7) are equivalent to the following conditions

D2(x)∇x�(x, λ) = 0, (1.9)
C(x) = 0, (1.10)
a ≤ x ≤ b. (1.11)

By applying Newton’s method on the nonlinear system (1.9),(1.10), we
obtain

[D2(x)∇2
x�(x, λ) + diag(∇x�(x, λ))diag(η(x))]Δx (1.12)

+ D2(x)∇C(x)Δλ = −D2(x)∇x�(x, λ),
∇C(x)TΔx = −C(x), (1.13)

where η(i)(x) = ∂((d(i)(x))2)
∂x(i) , i = 1, . . . , n. More details about the derivation

of equations (1.13) is given in [7],[12].
Inforcing a < x < b makes D(x) nonsingular. Now multiplying both sides

of Equation (1.13) by D−1(x), we obtain

[D(x)∇2
x�(x, λ) + D−1(x)diag(∇x�(x, λ))diag(η(x))]Δx

+ D(x)∇C(x)Δλ = −D(x)∇x�(x, λ),
∇C(x)T Δx = −C(x).

If we scale the step using Δx = D(x)s, the above system will have the form

Bs + D(x)∇C(x)Δλ = −D(x)∇x�(x, λ), (1.14)

(D(x)∇C(x))T s = −C(x). (1.15)

where
B = D(x)∇2

x�(x, λ)D(x) + diag(∇x�(x, λ))diag(η(x)).

The above system shares the advantages and the disadvantages of New-
ton’s method. Form Newton’s good side, under the standard assumptions for
Newton’s method for problem (1.1), the method converges quadratically to a
stationary point (x∗, λ∗) [12]. On the other side, it has the disadvantage of local
convergence. This means that the starting point (x0, λ0) must be sufficiently
closed to (x∗, λ∗) in order to guarantee convergence. In other word, it may not
converge at all if the starting point is far away from the solution.

Trust-region approach is a very successful approach to insure global conver-
gence from any starting point, see [6],[11]. To add a trust-region constraint, we
have to rewrite the extended system (1.14)-(1.15) as a minimization problem.
An equivalent problem is the following quadratic programming problem

minimize (D∇x�)T s + 1
2
sT Bs

subject to (D∇C)T s + C = 0 (1.16)
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Notice that the first order necessary conditions of problem (1.16) coincides with
(1.14)-(1.15).

If a trust-region constraint is simply added to Problem (1.16), the resulting
problem will take the form

minimize (Dk∇x�k)T s + 1
2
sT Bks

subject to (Dk∇Ck)T s + Ck = 0,
‖s‖2 ≤ δk.

(1.17)

But this trust-region subproblem may be infeasible because the intersecting
points between the trust-region constraint and the hyperplane of the linearized
constraints may not exist. Even if they intersect, there is no guarantee that the
intersecting set will remain nonempty if the trust-region radius is decreased.

The reduced Hessian is a successful approach to overcome the difficulty
of having a possible infeasible trust-region subproblem. This approach was
suggested by Byrd [4] and Omojokun [19].

The following notations are used throughout the rest of the paper. A sub-
scripted function means the value of the function evaluated at a particular
point. For example, fk ≡ f(xk), Ck ≡ C(xk), Dk ≡ Dk(xk) and so on. We use
the notation ∇x�

(i)
k to denote the ith component of the vector ∇x�k and x

(i)
k

to denote the ith component of the vector xk, and so on. Finally, all norms
used in this paper are �2-norms.

The paper is organized as follows. In section 2, a detailed description of the
main steps of the interior-point trust-region Algorithm IPTRA is given. Section
3 contains a Matlab implementation and reports of the numerical results of
Algorithm IPTRA. Section 4 contains four case studies of Algorithm IPTRA.
Finally, Section 5 contains some concluding remarks.

2 Description of the Algorithm

In this section a detailed description of the proposed interior-point trust-region
algorithm (IPTRA) for solving problem (1.1) is given.

2.1 Computing a trial step

The reduced-Hessian approach is used to compute a trial step sk. In this
approach, the trial step sk is decomposed into two orthogonal components;
the normal component sn

k and the tangential component st
k. The trial step sk

has the form sk = sn
k + Zk s̄t

k, where Zk is a matrix whose columns form an
orthonormal basis for the null space of (Dk∇Ck)T .

We obtain the normal component sn
k by solving the following trust-region

subproblem
minimize 1

2
‖(Dk∇Ck)T sn + Ck‖2

subject to ‖sn‖ ≤ ζδk,
(2.1)
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for some ζ ∈ (0, 1), where δk is the trust-region radius.
Given the normal component sn

k , the step s̄t
k is computed by solving the

following trust-region subproblem

minimize [ZT
k (Dk∇x�k + Bksn

k )]T s̄t + 1
2
s̄tT

ZT
k BkZk s̄t

subject to ‖Zks̄t‖ ≤ Δk,
(2.2)

where Δk =
√

δ2
k − ‖sn

k‖2. Once the step s̄t
k is computed, the tangential com-

ponent st
k is given by st

k = Zks̄t
k. To solve the trust-region subproblems (2.1)

and (2.2) we use the dogleg algorithm.
Having computed the trial step sk, the scaled step Δxk = Dksk, is com-

puted. A damping parameter τk is needed to ensure that the new point xk+Δxk

lies inside the box constraint. It is computed using the following Scheme:

Scheme 2.1. (computing τk)

Compute u
(i)
k =

{
a(i)−x

(i)
k

Δx
(i)
k

, if a(i) > −∞ and Δx
(i)
k < 0

1, otherwise,

Compute v
(i)
k =

{
b(i)−x

(i)
k

Δx
(i)
k

, if b(i) < ∞ and Δx
(i)
k > 0

1, otherwise.
Set τk = min{1, mini{u(i)

k , v
(i)
k }}

Since it is always require that {xk} satisfy, for all k, a < xk < b, another
damping θk in the step may be needed to insure a < xk < b. This can be stated
in algorithmic form as follows

Scheme 2.2. (computing θk)

If a < xk + τkΔxk < b, then set θk = 1.
Else choose θk ∈ (0.99, 1).

End if.

After computing the scaled step Δxk, we set the trial step ωk = θkτkΔxk

and xk+1 = xk +ωk. Estimates for the Lagrange multiplier λk+1 is needed. To
estimate the Lagrange multiplier λk+1 we solve

min
λ∈Rm

‖∇fk+1 + ∇Ck+1λ‖2. (2.3)

We test whether the point (xk+1, λk+1) will be accepted and taken as a next
iterate. To test for that, a merit function is needed. The following augmented
Lagrangian

Φ(x, λ; ρ) = f(x) + λT C(x) + ρ‖C(x)‖2, (2.4)
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is used as a merit function, where ρ > 0 is the penalty parameter. The ac-
tual reduction in the merit function in moving from (xk, λk) to (xk+1, λk+1) is
defined as

Aredk = Φ(xk, λk; ρk) − Φ(xk+1, λk+1; ρk). (2.5)

The predicted reduction in the merit function is defined as

Predk = −∇x�(xk, λk)T ωk − 1
2
ωT

k ∇2
x�kωk − ΔλT

k (Ck + ∇CT
k ωk)

+ρk[‖Ck‖2 − ‖Ck + ∇CT
k ωk‖2], (2.6)

where Δλk = λk+1 − λk.

2.2 Updating the penalty parameter ρk

The penalty parameter ρk is updated to ensure that

Predk ≥ ρk

2
‖Ck‖2 − ‖Ck + ∇CT

k ωk‖2.

To update ρk, we use the scheme proposed in [10].

Scheme 2.3. (computing ρk)

Set ρk = ρk−1.

If Predk < ρk

2
[‖Ck‖2 − ‖Ck + ∇CT

k ωk‖2], then set

ρk =
2[∇x�(xk, λk)T ωk + 1

2
ωT

k ∇2
x�kωk + ΔλT

k (Ck + ∇CT
k ωk)]

‖Ck‖2 − ‖Ck + ∇CT
k ωk‖2

+ β, (2.7)

where β > 0 is a small fixed constant.

2.3 Testing the Step and Updating δk

The point (xk+1, λk+1) needs to be tested to determine whether it will be
accepted. We do this by comparing Aredk to Predk, as in the following scheme.

Scheme 2.4. (testing (xk+1, λk+1) and uptading δk)

If Aredk

Predk
< γ1 , where 0 < γ1 < 1.

Reduce the trust-region radius by setting δk = α1‖Δxk‖, where α1 ∈
(0, 1) .
Compute another trial point (xk+1, λk+1).

Else if γ1 ≤ Aredk

Predk
< γ2, 0 < γ1 < γ2 < 1, then



S. Y. Abdelkader, B. EL-Sobky and M. EL-Alem 45

Accept the point (xk+1, λk+1).
Set the trust-region radius: δk+1 = max(δk, δmin), where δmin is a
fixed constant.

Else

Accept the point (xk+1, λk+1).
Set the trust-region radius: δk+1 = min{δmax, max{δmin, α2δk}},
where δmax is a fixed constant, (δmax > δmin) and α2 > 1.

End if.

Finally, the algorithm is terminated when ‖Dk∇x�k‖+ ‖Ck‖ ≤ ε, for some
ε > 0. A formal description of the proposed interior-point trust-region algo-
rithm (IPTRA) for solving problem (1.1) is presented in Algorithm 1.

Algorithm 1. ( IPTRA)
Step 0. (Initialization)

Given x0 ∈ �n such that a < x0 < b. Evaluate λ0, D0.
Set ρ−1 = 1 and β = 0.1. Choose ε, σ, α1, α2, γ1, and γ2 such that
ε > 0, σ > 0, 0 < α1 < 1 < α2, and 0 < γ1 < γ2 < 1. Choose δmin,
δmax, and δ0 such that δmin < δmax, δ0 ∈ [δmin, δmax]. Set k = 0.

Step 1. (Test for convergence)

If ‖Dk∇x�k‖ + ‖Ck‖ ≤ ε, then terminate the algorithm.

Step 2. (Compute a trial step)

If ‖Ck‖ = 0, then

a) Set sn
k = 0.

b) Compute the step s̄t
k by solving Subproblem (2.2)

c) Set sk = Zk s̄t
k.

Else

a) Compute the normal component sn
k by solving Subprob-

lem (2.1).
b) If ‖ZT

k (Dk∇x�k + Bksn
k )‖ = 0, then set s̄t

k = 0.
Else, compute s̄t

k by solving subproblem (2.2).
End if.
c) Set sk = sn

k + Zk s̄t
k, Δxk = Dksk.

End if.

Step 3. (Test for the box interiority)
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a) Compute the damping parameter τk using Scheme 2.1.
b) Set xk+1 = xk + τkΔxk.
c) Compute θk according to Scheme 2.2

Step 4. (Compute Lagrange multipliers λk+1)

Compute λk+1 by solving Subproblem (2.3).

Step 5. (Update the scaling matrix)

Compute Dk+1.

Step 6. (Update the penalty parameter ρk)

Updating ρk according to Scheme 2.3

Step 7. (Test the step and update the trust-region radius)

Test the step and update δk according to Scheme 2.4

Step 8. Set k = k + 1 and go to Step 1.

3 Numerical results

In this section, we report our numerical experience with the proposed trust-
region algorithm IPTRA for solving Problem (1.1). Our program was written
in MATLAB and run under MATLAB Version 7 with machine epsilon about
10−16.

Given a starting point x0 such that a < x0 < b, we chose the initial trust-
region radius δ0 = max(‖s0‖, δmin), where δmin = 10−3 and s0 is the full
Cauchy step of the constraints C(x) at x0 (i.e. s0 = − ∇CT

0 ∇C0

∇CT
0 ∇2C0∇C0

∇CT
0 C0).

We chose the maximum trust-region radius to be δmax = 105δ0 . The values
of the constants that are needed in step 0 of Algorithm IPTRA were set to
be γ1 = 10−4, γ2 = 0.5, α1 = 0.5, α2 = 2, ε = 10−8, ε1 = 10−8, ε2 = 10−8.
θ = .9995 and β = 0.1.

For computing the component of the trial steps, we have used the dogleg
algorithm. Successful termination with respect to the proposed trust-region
algorithm means that the termination condition of the algorithm is met with
ε = 10−8. On the other hand, unsuccessful termination means that the number
of iterations is greater than 500 or the number of function evaluations is greater
than 1000.

Numerical results obtained using Algorithm IPTRA have been reported and
summarized in Tables (3.1) and (3.2). The problems which were tested in these
tables were taken from Hock and Schittkowski [16]. The following abbreviations
have been used:
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HS : The number of problem as it is given in Hock and Schittkowski
[16].
n : number of variables.
me : number of equality constraints.
mi : number of inequality constraints.
# Niter : number of iterations of Algorithm IPTRA.
# Nfunc : number of function evaluations of Algorithm IPTRA.
ngrad : value of ‖Dk∇x�k‖+ ‖Ck‖.
# Fiter: number of iteration of Fletcher’s algorithm [14].
# Ffunc: number of function evaluation of Fletcher’s algorithm
[14].

The numerical results of Algorithm IPTRA for some test problems of Hock
and Schittkowski [16] at a feasible starting point with respect to the bounds
have been listed. A comparison of our results with those obtained by Matlab
is presented in Table (3.1).

A comparison of our numerical results against the corresponding results of
Fletcher [14] at the same starting point indicated in Hock and Schittkowski
is presented in Table (3.2). Solution obtained by the proposed algorithm are
exactly identical to those given by Hock and Schittkowski.

4 Case Studies

In this section, four mechanical design problems are presented as case studies
IPTRA algorithm.

Case 1. Design of a Pressure Vessel [17]
A cylindrical vessel is capped at both ends by hemispherical heads as shown in
figure (4.1). The objective is to minimize the total cost, including the cost of the
material, forming and welding. There are four design variables: Ts (thickness
of the shell), Th (thickness of the head), R (inner radius) and L( length of
the cylindrical section of the vessel not including the head). Ts and Th are
integer multiples of 0.0625 inch, which are the available thicknesses of rolled
steel plates, and R and L are continuous variables.



48 A Computationally Practical Interior-Point Trust-Region Algorithm for..

Table 3.1: Numerical results of the Algorithm IPTRA for the Hock and Schit-
tkowski’s test problems.

starting Algorithm IPTRA Matlab

problem n me mi point ngrad #Niter
#Nfunc

#Niter
#Nfunc

HS1 2 0 1 (-2,1) 9.6006e-008 24/29 37/121
HS17 2 0 5 (0,1) 9.8648e-009 7/8 10/42
HS20 2 0 5 (0,1) 2.3282e-007 6/7 7/24
HS21 2 0 5 (5,2) 4.0984e-014 4/5 11/36
HS24 2 0 5 (1,0.5) 4.9898e-016 5/6 15/49
HS30 3 0 7 (2,1,1) 5.4610e-008 5/6 6/28
HS31 3 0 7 (2,2,0) 1.4414e-009 6/7 12/59

HS34 3 0 8 (5,2,3) 1.1253e-012 9/10 19/81
HS35 3 0 4 (0.5,0.5,0.5) 2.1551e-008 6/7 11/48
HS36 3 0 7 (10,10,10) 4.8587e-010 6/7 7/32
HS38 4 0 8 (3,1,3,1) 1.4350e-007 11/12 55/308
HS41 4 1 8 (0.5,0.5,0.5,1) 1.4168e-008 5/6 16/85
HS45 5 0 10 (0.5,0.7,1,2,3) 5.5541e-009 7/8 19/125
HS53 5 3 10 (2,2,2,2,2) 8.0960e-008 4/5 8/55
HS55 6 6 8 (0.5,1,1,0.5,1,2) 2.1991e-008 6/7 9/71
HS65 3 0 7 (1,1,0) 1.0674e-010 9/10 fail
HS66 3 0 8 (3,1.5,2) 2.5305e-009 8/9 14/60
HS71 4 1 9 (2,4,4,2) 1.2910e-010 6/7 8/46

HS74 4 3 10 (1,1,0,0) 4.8247e-007 15/16 15/79
HS75 4 3 10 (1,1,0,0) 1.4066e-009 16/17 10/55

Table 3.2: Numerical results of IPTRA and the corresponding results of
Fletcher’s algorithm.

Algorithm IPTRA filterSD
problem n me mi # Niter / # Nfunc # Fiter/ # Ffunc

HS6 2 1 0 16 / 28 4 / 8
HS12 2 0 1 5/12 8/23
HS19 2 0 6 7 / 8 6 / 7
HS23 2 0 9 8 / 9 6 / 6
HS26 3 1 0 19/ 23 5/61
HS32 3 1 4 6 / 7 3 / 15
HS39 4 2 0 9 / 10 20 / 121
HS43 4 0 3 8/10 8/57
HS60 3 1 6 7 / 8 3 / 35
HS63 3 2 3 7 / 8 9 / 24
HS80 5 2 10 6 / 7 6 / 30
HS81 5 3 10 6 / 7 11 / 103
HS93 6 0 8 10 / 17 4 / 213
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Figure 4.1: The pressure vessel design problem

Using the same notation given in [17], the problem can be stated as follows:

minimize f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to

g1(x) = −x1 + 0.0193x3 ≤ 0
g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx2
3x4 − (4/3)πx3

3 + 1296000+ ≤ 0
g4(x) = x4 − 240 ≤ 0
0 ≤ x1, x2 ≤ 100,

10 ≤ x3, x4 ≤ 200.

A comparison of best solutions of this problem using different optimization
techniques against ours is presented in Table (4.1). From Table (4.1), it can be
seen that the solution found by IPTRA is better than the solutions found by
other techniques which listed in the table.

Table 4.1: Comparison of the best solutions for the pressure vessel design
problem.

Design Kannan and Deb He and Lobato and Algorithm
variables Kramer (1997)[9] Wang Steffen IPTRA

(1994)[17] (2007)[15] (2014)[18] IPTRA
x1 1.125000 0.937500 0.812500 0.812500 0.7781686412897
x2 0.625000 0.500000 0.437500 0.437500 0.3846491626309
x3 58.29100 48.32900 42.09126 42.09127 40.3196187240987
x4 43.69000 112.6790 176.7465 176.7466 200
f 7198.0428 6410.3811 6061.0777 6061.0778 5885.332773005870
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Case 2. Welded Beam Design [20]
A welded beam is designed for minimum cost subject to constraints on shear
stress (τ ), bending stress in the beam (σ) buckling load on the bar (Pc), end
deflection of the beam(δ), and side constraints. There are four design variables
as shown in figure (4.2), h(x1), l(x2), t(x3) and b(x4). The problem can be

Figure 4.2: The welded beam design problem

stated as follows:

Minimize f(x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

subject to

g1(x) = τ (x) − τmax ≤ 0
g2(x) = σ(x) − σmax ≤ 0
g3(x) = x1 − x4 ≤ 0

g4(x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0

g5(x) = 0.125− x1 ≤ 0
g6(x) = δ − δmax ≤ 0
g7(x) = P − Pc ≤ 0

τ =
√

(τ1)2 + 2τ1τ2
x2

2R
+ (τ2)2

τ1 =
P√

2x1x2

τ2 =
MR

J

M = P (L +
x2

2
)
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R =

√
x2

2

4
+ (

x1 + x3

2
)2

J = 2{√2x1x2[
x2

2

12
+ (

x1 + x3

2
)2]}

σ(x) =
6PL

(x4x2
3)

δ(x) =
4PL3

(Ex4x3
3)

Pc =
4.013E

√
x2
3x6

4
36

L2
(1 − x3

2L

√
E

4G
)

0.1 ≤ x1, x4 ≤ 2
0.1 ≤ x2, x3 ≤ 10

P = 6000, L = 14, E = 30 × 106, G = 12 × 106

τmax = 13600, σmax = 30000, δmax = 0.25

Table 4.2 presents a comparison between best solutions of different opti-
mization techniques against ours for this problem. From which it can be seen
that IPTRA solution is better than the solutions found by other techniques
which listed in the table.

Table 4.2: Comparison of the best solutions for the welded beam design prob-
lem.

Design Deb Coello He and Wang Lobato and Algorithm
variables (1991)[8] (2000)[5] (2007)[15] Steffen IPTRA

(2014)[18]
x1 0.248900 0.208800 0.202369 0.208796 0.205727860241585

x2 6.173000 3.420500 3.544214 3.412545 3.470389674407195
x3 8.178900 8.997500 9.048210 8.910044 9.036980598594390
x4 0.253300 0.210000 0.205723 0.210001 0.205727860244276
f 2.433116 1.748309 1.728024 1.7318117 1.724884179475869

Case 3. Minimization the Weight of a Tension/Compression String
This problem was proposed by Arora [1], Belegundu [3] and He and Wang [15].
It consists of minimizing the weight of a tension compression spring shown in
figure (4.3) subject to constraints on minimum deflection, shear stress, surge
frequency, limits on outside diameter and on design variables. The design
variables are the mean coil diameter D, the wire diameter d and the number of
active coils N .

The mathematical formulation of this problem can be described as follows:
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Figure 4.3: Tension/compression string problem

minimize f(x) = (x3 + 2)x2x
2
1

subject to

g1(x) = 1 − x3
2x3

71785x4
1

≤ 0

g2(x) =
4x2

2 − x1x2

12566(x2x
3
1 − x4

1)
+

1
5108x2

1

− 1 ≤ 0

g3(x) = 1 − 140.45x1

x2
2x3

≤ 0

g4(x) =
x1 + x2

1.5
− 1 ≤ 0

0.05 ≤ x1 ≤ 2
0.25 ≤ x2 ≤ 1.3
2 ≤ x3 ≤ 15.

Our solution for this problem is compared to the best solutions of different
optimization techniques in Table (4.3), it can be seen that IPTRA solution is
better than solutions found by other techniques listed in the table.

Table 4.3: Comparison of the best solutions for the tension/compression spring
design problem.

Design Belegundu Arora He and Lobato and Algorithm
variables (1982)[3] (1989)[1] Wang Steffen IPTRA

(2007)[15] (2014)[18]
x1 0.050000 0.053396 0.051728 0.051744 0.051689061592032

x2 0.315900 0.399180 0.357644 0.357754 0.356717752054532
x3 14.25000 9.185400 11.244543 11.56132 11.288965032614222
f 0.012674 0.012730 0.012674 0.012789 0.012665232787753
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Case 4. Heat Exchanger Design [2]
A fluid having a given flow rate W and specific heat Cp is heated from tem-
perature T0 to T3 by passing three heat exchangers in series. In each heat
exchanger (stage) the cold stream is heated by a hot fluid having the same flow
rate W and specific heat Cp as the cold stream. The temperatures of the hot
fluid entering the heat exchangers, t11, t21 and t31 and the overall heat transfer
coefficients U1, U2, U3 of the exchangers are known constants. Optimal design
involves minimizing the sum of the heat transfer areas of the three exchangers,
AT = A1 + A2 + A3, as shown in figure (4.4).

Figure 4.4: Three-stage heat exchanger system

The mathematical formulation of this problem can be described as follows [20]:

minimize AT = A1 + A2 + A3

subject to

g1(x) = 0.0025(T1 + t12) − 1 ≤ 0
g2(x) = 0.0025(−T1 + T2 + t22) − 1 ≤ 0
g3(x) = 0.01(−T2 + t32) − 1 ≤ 0
g4(x) = 100A1 − A1t12 + 833.33252T1 − 83333.333 ≤ 0
g5(x) = A2T1 − A2t22 − 1250T1 + 1250T2 ≤ 0
g6(x) = A3T2 − A3t32 − 2500T2 + 1250000 ≤ 0
100 ≤ A1 ≤ 10, 000
1000 ≤ Ai ≤ 10, 000, i = 2, 3
10 ≤ Ti ≤ 1000, i = 1, 2
10 ≤ ti2 ≤ 1000, i = 1, 2, 3.

From Table (4.4), it can be seen that the solution of the three-stage heat
exchanger system problem found by IPTRA is almost the same by other com-
peting technique ( Avriel [2]).
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Table 4.4: Comparison of the solutions for three-stage heat exchanger system
problem.

Design variable Avriel [2] Algorithm IPTRA
A1 567 579.306684436986
A2 1357 1359.970668094694
A3 5125 5109.970666971246
T1 181 182.017699592019
T2 295 295.601173303897
t12 219 217.982300431680
t22 286 286.416526324619
t32 395 395.601173312338
AT 7049 7049.248019502926

5 Conclusion remarks

In this paper, an interior point trust-region algorithm has been introduced to
solve a general nonlinear programming problem. A Coleman-Li scaling ma-
trix is used with an interior-point Newton method in the proposed algorithm.
The reduced-Hessian technique is used to overcome the difficulty of having an
infeasible trust-region subproblem and to simplify it.

A Matlab code of the proposed algorithm is implemented and tested against
some existing codes. The results confirm the efficiency of the IPTRA algorithm.
In addition to that, four case studies have been implemented to test the per-
formance of the proposed algorithm where the results showed that the solution
of the IPTRA algorithm is better than the best solutions of other techniques
except for case 4 where the results were almost the same. We believe the
proposed algorithm can be applied for solving real-world application problems
efficiently.
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