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Abstract

On the basis of semiempirical equation of turbulent diffusion obtained
analytical solution for the field of the contaminant concentration in the
surface layer of the atmosphere with power laws according to the vertical
profile of wind speed and mixing coefficient. Solutions obtained in the en-
vironment with noted to the background concentration, dry deposition of
contaminant on the underlying surface, shuttering or evaporation of the
contaminant from the underlying surface and the stationary continuous
high emissions sources, i.e. with boundary conditions of the third kind of
a stationary source. Scattering, transport, and deposition of heavy dust
also considered.

1 Introduction

The problem of pollution modeling in the atmosphere is divided into different
cases based on its boundary conditions. Boundary conditions in this context
are the interaction between pollutants to surface linings, covers the surface of

Key words: Analytical dispersion modeling, Green function method, diffusion, boundary
conditions.
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the earth or inversion layer surface. Often the boundary conditions at the sur-
face divided into three main types: Dirchlet boundary conditions corresponding
to the case of completely absorbed at the surface, Neumann boundary condi-
tions corresponding to the case of complete reflection at the surface, and the
mixed boundary conditions corresponding to the case partly absorbed at the
surface. In particular, Neumann boundary conditions represent the worst case
for the environment and most authors focus on solving this problem [24], [8] ,
[22]. Also, In addition, the Dirichlet boundary conditions are also interested
many authors, and they represent different analytical solutions and analysis
[22]. Mixed boundary conditions are closer to reality than the Neumann and
Dirichlet boundary conditions, but finding the analytical solution for this case
is more difficult. Mixed boundary conditions take into account the absorption
of the land expressed by dry deposition. Dry deposition is the absorption of
pollutants in the atmosphere at the Earth’s surface. The absorption is caused
by land, water or plant photosynthesis. Dry deposition process reduces the
concentration of pollutants in the air in remote areas downwind of emission
sources, while the level of contamination may increase in the near place of
emission sources, depending on the type of material deposition [21]. A math-
ematical model of the spread of pollutants in the air, taking into account the
factors of dry deposition is carried out through the calibration equation Gaus-
sian smoke trail [12], [2], [8]. In particular, the diffusion coefficients Kx, Ky, Kz

is considered constant. In this way, the authors based on meteorological ob-
servation and correction model coefficients accordingly. This approach has
weaknesses in the process of refinement meteorological parameters because it
is based on experience. One approach to more theoretical modeling spreads
- dry deposition is focused on solving equations substance spread in the at-
mosphere with reflective boundary conditions at the ground surface [7] . In
previous research oriented on analysis [23], the approach is to make the wind
velocity and diffusion coefficient regardless of altitude. These approaches, al-
though much progress compared with previous studies but still inconvenient
for practical implementation. The approach in the study [21] gave a general
algorithm for solving advection diffusion with wind velocity and diffusion co-
efficient tangled follow exponential law. Source located at any position in the
region. The approach is based on the previous results on the Green’s function,
in which the Green’s function is constructed for each block according to the
different homogeneous boundary conditions .
An important study using Berliand approach made by the authors [14]. The
model describes the interactions between contaminants and surface lining. The
authors present the solution advection diffusion problem with mixed bound-
ary conditions. Deposion term is represented by dry deposition velocity vd and
function represents deposition surface: A(x).
The authors use the Green function method. As a result, the authors find an-
alytical solutions for the case of emission source in the ground. In this paper,
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we present the solution to the problem of pollution spreading for the mixed
boundary conditions to calculate the concentration of ground contamination
with high emissions sources. The results of the analysis were calculated to
assess and argue.

2 Atmospheric advection - diffusion equation

Definition 1. The problem of two-dimensional steady state advection-diffusion
equation in is

u
∂q

∂x
+ w

∂q

∂z
=

∂

∂z

(
Kz

∂q

∂z

)
+ s(x, z)

s(x, z) = Qδ (x − xs) δ (z − zs)
(1)

where x, z are the Cartesian coordinates in the downwind direction and the
vertical(positive up-ward) direction, respectively, q(x, z) is the ambient concen-
tration of the contaminant,u(z) is the wind speed in the x direction at height
z; w is the vertical velocity, Kz is the eddy diffusivities in z direction, s(x, z)
is the source strength function (mass/vol air-time), Q is the source strength,
(xs, zs) is the location of the point source, δ is the Dirac delta function [11].

3 The mixed boundary condition

In this paper, we solve the atmospheric advection - diffusion equation with the
mixed boundary condition. The mixed boundary condition has been define as
follows.

Definition 2. The mixed boundary condition of the equation (1) is

⎧⎪⎪⎨
⎪⎪⎩

q(x, 0) = Qδ (z − zs)
q = q0 at z → ∞, x → ∞
Kz

∂q

∂z
− vdq = A (x) at z = 0

(2)

where q0 is the ground ambient concentration, vd is the dry deposition velocity,
A(x) is the interaction function between pollutants and ground’s surface.

4 Analytical solutions

The atmospheric advection - diffusion equation with mixed boundary condi-
tion is considered in this section. The wind speed and the eddy diffusivity
profile have been specified to obtain the solution of the equation (1). Using the
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Berliand’s profile [4], the wind speed and the vertical eddy diffusivity can be
expressed as power laws function of height, respectively as follows

u(z) = azm, Kz(z) = bzn (3)

where a and b are constants. There are many of researchers [3], [26], [25] [20]
[22] using the wind speed and eddy diffusivity in the closed-form of the equation
(3) .

4.1 Case 1: w = 0

The equation (1) becomes

u
∂q

∂x
=

∂

∂z

(
Kz

∂q

∂z

)
+ s(x, z) (4)

Transforming the variables as follows

ξ =
x

L
, ζ =

( a

bL

)ν z1−n

(1 − n)2ν , χ = q − q0 (5)

where ν =
1− n

2 + m − n
, L- the limit of the problem.

The equation (1) becomes

∂2χ

∂ζ2
− ζ1/ν−2 ∂χ

∂ξ
= −ζ1/ν−2f(ξ, ζ) (6)

and the boundary condition becomes

χ = 0 at ξ = 0, ζ → ∞ (7)

∂χ

∂ζ
− αχ = α

[
q0 − A(ξ)

vd

]
at ζ = 0 (8)

where

f (ξ, ζ) =
a

L

[(
bL

a

)ν

(1 − n)2ν
Z

]−n/(1−n)

s(ξ, ζ) (9)

α =
vd

b

(
bL

a

)ν

(1 − n)2ν−1 (10)

The solution of the problem (6)-(7)-(8) can be expressed as

χ (ξ, ζ) = χQ (ξ, ζ) + χA (ξ, ζ) (11)
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where, χQ (ξ, ζ) is the solution of the equation (6) with the simply form of the
condition equation (8) as follows

∂χ

∂ζ
= −Φ(ξ) (12)

and Φ(ξ) is the solution of the homogeneous form of equation (8)

∂χ

∂ζ
− αχ = 0 at ζ = 0, (13)

χA(ξ, ζ) is the solution with the Green function G(ξ−ξ0, ζ) of the problem with
homogeneous boundary conditions Using the Greens function method [10] [19],
[9] the solution of the steady-state atmospheric diffusion with homogeneous
boundary condition, χQ, can be expressed as

χQ (ξ, ζ) =

ξ∫
0

∞∫
0

G (ξ, ζ, ξ0, ζ0) g (ξ0, ζ0) dξ0dζ0 +

ξ∫
0

G (ξ, ζ, ξ0, ζ0 = 0)Φ (ξ0) dξ0

(14)
g (ξ, ζ) = ζ1/ν−2f (ξ, ζ) (15)

where G (ξ, ζ, ξ0, ζ0) is the Green’s function of the equation (6) with Neumann

condition: Kz
∂χ

∂ζ
= 0 at ζ= 0.

G (ξ, ζ, ξ0, ζ0) =
ν(ζζ0)

1/2

ξ − ξ0
exp

⎡
⎣−ν2

(
ζ1/ν + ζ

1/ν
0

)
ξ − ξ0

⎤
⎦ I−ν

[
2ν(ζζ0)

1/(2ν)

ξ − ξ0

]

(16)
where I−ν (z)- modified Bessel function of the first kind, [6]. and

g (ξ, ζ) =
Q

Q0
δ (ξ − ξs) δ (ζ − ζs) , Q0 = La

(
bL

a

)1−ν

(1 − n)1−2ν (17)

The solution χQ is

χQ (ξ, ζ) =
Q

Q0

ν(ζζs)
1/2

ξ − ξs
exp

⎡
⎣−ν2

(
ζ1/ν + ζ

1/ν
s

)
ξ − ξs

⎤
⎦ I−ν

[
2ν(ζζs)

1/(2ν)

ξ − ξs

]

− αν1−2ν

Γ (1 − ν)

ξ∫
0

ν1−2ν

(ξ − ξ0)
1−ν

exp
(
−ν2ζ1/ν

ξ − ξ0

)
Q

Q0
ζs

ν−1
2ν exp

[
− ν2ζs

1/ν

2 (ξ0 − ξs)

]

×
∞∑

K=0

(−γ)K(ξ0 − ξs)
(2K+1)ν−1

2 W 1−(2K+1)ν
2 , ν

2

(
ν2ζs

1/ν

ξ0 − ξs

)
dξ0

(18)
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where WK,μ(z) is Whittaker function, which can be defined as follows

Definition 3. ([6]) For arbitrary real parameters a, b and arbitrary real or
complex z , the Kummer’s equation is defined as

z
du

dz
+ (b − z)

du

dz
− au = 0 (19)

The complete solution of Kummer equation is

u = AM (a, b, z) + BU (a, b, z)

where M(a, b, z) and U(a, b, z) are independent solutions

M(a, b, z) =
∞∑

s=0

(a)s

(b)ss!
zs = 1 +

a

b
z +

a(a + 1)
b(b + 1)2!

z2 + ..., (20)

U(a, b, z) =
π

sin πb

[
M(a, b, z)

Γ(1 + a − b)Γ(b)
− z1−b M(1 + a − b, 2− b, z)

Γ(a)Γ(2 − b)

]
(21)

A, B are arbitrary constants.

Definition 4. ([6]) For arbitrary real parameters a, b and arbitrary real or
complex z , the Whittaker’s equation is defined as

d2u

dz2
+
(

1
4

+
K

z
+

1
4 − μ2

z2

)
u = 0 (22)

The complete solution of Whittaker equation is

u = AMK,μ (z) + BWK,μ (z)

where MK,μ(z) and WK,μ(z) are independent solutions

MK,μ (z) = exp
(
−1

2
z

)
z

1
2+μM

(
1
2

+ μ − K, 1 + 2μ, z

)
, (23)

WK,μ (z) = exp
(
−1

2
z

)
z

1
2+μU

(
1
2

+ μ − K, 1 + 2μ, z

)
(24)

A, B are arbitrary constants.

Notes that the series for γ is a convergent series. Therefore, the first approx-
imation value (K = 0) is used for computation. Suppose that the point source
located in Oyz, i.e ξs = 0. The relation of WhittakerW function and Kummer
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U function [6] is used to compute the concentration at ground’s surface (ζ = 0).
The equation (18) becomes

χQ (ξ, ζ = ξs = K = 0, ζs) =
Q

Q0

ν1−2ν

Γ (1 − ν) ξ1−ν
exp

(
−ν2ζs

1/ν

ξ

)

−α
Q

Q0

ν3−5ν

Γ2 (1 − ν)
×

ξ∫
0

(ξ − ξ0)
ν−1ξ0

ν−1 exp

(
−ν2ζs

1/ν

ξ0

)
dξ0

(25)

Evaluating the integral in equation(25) gives

χQ (ξ, ζ = ξs = K = 0, ζs) =
Q

Q0

ν1−2ν

Γ (1 − ν) ξ1−ν
exp

(
−ν2ζs

1/ν

ξ

)

−α
Q

Q0

ν2−4νΓ (ν) ξ
3ν−1

2 ζs

ν−1
2ν

Γ2 (1 − ν)
× exp

(
−ν2ζs

1/ν

2ξ

)
W− 3ν−1

2 ,− ν
2

(
ν2ζs

1/ν

ξ

)

(26)
The solution χA (ξ, ζ) can be found in form:

χA (ξ, ζ) =

ξ∫
0

GQ (ξ − ξ0, ζ)A∗ (ξ0) dξ0 (27)

where

A∗ (ξ0) = α

[
q0 − A (ξ0)

vd

]
(28)

In simple case, setting A(ξ) = A0 = const. Therefore, equation (27) becomes

χA (ξ, ζ,A0) = α

(
q0 − A0

vd

)
1

Γ (1 − ν)

{
νζΓ

(
−ν,

ν2ζ1/ν

ξ

)

−α
ν2(1−ν)ζ

ν−1
2ν

Γ(1 − ν) Γ (1 + ν)
exp

(
−ν2ζ1/ν

2ξ

)

×
∞∑

K=0
(−γ)KΓ [(K + 1) ν] Γ [(K + 1) ν − 1] ξ

(2K−3)ν−1
2 W− (2K−3)ν−1

2 , ν
2

(
ν2ζ1/ν

ξ

)}

(29)

At ground’s surface ζ → 0, using the relation of WhittakerW function and
KummerU function [6] in case 1 < 1 + 2μ = 1 + ν < 2, equation (29) becomes

χA (ξ, ζ = 0, A0) =
(

q0 − A0

vd

)
αν

Γ (1 − ν)

{
ν1−2νξν − αν3(1−ν)Γ (ν)

Γ (1 − ν) Γ (1 + ν)
∞∑

K=0

(−γ)K Γ [(K + 1) ν ] Γ [(K + 1) ν − 1]
Γ [(K + 2) ν]

ξ(K+2)ν

}
(30)
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The first approximation value (K = 0) is

χA (ξ, ζ = K = 0, A0) = α

(
q0 − A0

vd

)
ν

Γ(1 − ν)

[
ν1−2νξν − α

ν3(1−ν)Γ2 (ν) Γ (ν − 1)

Γ (1 − ν)Γ (1 + ν) Γ (2ν)
ξ2ν

]

(31)

Substituting equations (26) and (31) into equation (11) gives the equation of
concentration at ground’s surface with the height point source as follows

χ (ξ, ζ = 0, ζs) =
Q

Q0

ν1−2ν

Γ (1 − ν) ξ1−ν
exp

(
−ν2ζs

1/ν

ξ

)

−α
Q

Q0

ν2−4νΓ (ν) ξ
3ν−1

2 ζs
ν−1
2ν

Γ2 (1 − ν)
exp

(
−ν2ζs

1/ν

2ξ

)
× W− 3ν−1

2 ,− ν
2

(
ν2ζs

1/ν

ξ

)

+α

(
q0 − A0

vd

)
ν

Γ (1 − ν)

[
ν1−2ν ξν − α

ν3(1−ν)Γ2 (ν) Γ (ν − 1)

Γ (1 − ν) Γ (1 + ν)Γ (2ν)
ξ2ν

] (32)

4.2 Case 2: w �= 0 and n = 1

It correspond to the case of atmosphere with inversion layer. The Berliand
profile in this case can be expressed as

u∗(z) = azm−w/b

K∗(z) = bz1−w/b (33)

Substituting equation (33) into equation(1) gives

u∗(z)
∂q

∂x
=

∂

∂z
K∗(z)

∂q

∂z
+ s(x, z) (34)

Hence, we rename the variables as follows

m∗ = m− w

b
, n∗ = 1 − w

b
, ν∗ =

1 − n∗

2 + m∗ − n∗ (35)

and

ξ =
x

L
, ζ → ζ∗ =

( a

bL

)ν∗
z1−n∗

(1 − ν∗) 2ν∗ , α → α∗ =
vd

b

(
bL

a

)ν∗

(1 − n)2ν∗−1

Q0 → Q0
∗ = La

(
bL

a

)1−ν∗

(1 − n)1−2ν∗
, γ → γ∗ = α∗ν1−2ν∗

Γ(ν∗)
Γ(1 − ν∗)

p−ν∗

(36)
The equation of concentration at ground’s surface with the height point source
becomes

χw (ξ, ζ∗ = ξs = 0, ζ∗s ) =
Q

Q∗
0

ν∗1−2ν∗

Γ (1 − ν∗) ξ1−ν∗ exp

(
−ν∗2ζ∗s 1/ν∗

ξ

)

−α∗ Q

Q∗
0

ν∗2−4ν∗
Γ (ν∗) ξ

3ν∗−1
2 ζ∗s

ν∗−1
2ν∗

Γ2 (1 − ν∗)
exp

(
−ν2ζ∗s 1/ν∗

2ξ

)
× W− 3ν∗−1

2 ,− ν∗
2

(
ν∗2ζ∗s 1/ν∗

ξ

)

+

(
q0 − A0

vd

)
α∗ν∗

Γ (1 − ν∗)

[
ν∗1−2ν∗

ξν∗ − α∗ν∗3(1−ν∗)Γ2 (ν∗) Γ (ν∗ − 1)

Γ (1 − ν∗) Γ (1 + ν∗) Γ (2ν∗)
ξ2ν∗

]

(37)
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5 Numerical examples

The model has been tested in 2 case studies:

• Case study 1 (w = 0),m = 0.29, n = 0.45, a = 1.5ms−1.m1−0.29, b =
0.025ms−1.m1−0.29, xs = 0m, zs = 40m, z = 0m, Q = 10gs−1, q0 =
10−4m−2s−1, vd = 0.0001ms−1, A0 = 1.5.10−4.

• Case study 2 (w �= 0), w = 0.1, (w = 0),m = 0.29, n = 0.45, a =
1.5ms−1.m1−0.29, b = 0.025ms−1.m1−0.29, xs = 0m, zs = 40m, z = 0m,
Q = 10gs−1, q0 = 10−4m−2s−1, vd = 0.0001ms−1, A0 = 1.5.10−4.
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Figure 1: Variation of downwind ground level concentration in case study 1
(z = 0.0m) with dry deposition velocities (dotted line: vd = 0.025ms−1; dot-
dashed line: vd = 0.020ms−1; dashed line: vd = 0.015ms−1; solid line: vd =
0.010ms−1)

On the ground level, the concentration increase first with the distance x from
0, reaches its maximum value, and then decrease with the greater distance x.

6 Conclusion

In conclusion, an analytical solution for the atmospheric advection diffusion
equation for point steady source in the third kind of boundary condition is
developed. The novelty of this paper is the solution with height point steady
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Figure 2: Variation of downwind ground level concentration in case study 2
(z = 0.0m) with dry deposition velocities (dotted line: vd = 0.25ms−1; dot-
dashed line: vd = 0.02ms−1; dashed line: vd = 0.015ms−1; solid line: vd =
0.01ms−1)

source. It closer to reality than the solution with the point source lay in ground
[14] . APPENDICES

Nomenclature

x, z Downwind distance, height above ground, L
xs, zs The location of the source, L
u, w The wind speeds along x-axis, y-axis, Lt−1

m The power-law constant of wind profile, dimensionless
n The power-law constant of vertical eddy diffusivity profile,

dimensionless
a The diffusivity profile, dimensionless, L1−mt−1

b Parameter in power-law vertical eddy diffusivity profile, L2−nt−1

s The source term in atmospheric advection - diffusion equation,
ML−3t−1

Q The emission strength of the point source, Mt−1
Ky , Kz The lateral and the vertical eddy diffusivity, L2t−1

vd The dry deposition velocity, Lt−1

Iv(z) The modified Bessel function of first kind, dimensionless
Kv(z) The modified Bessel function of second kind, dimensionless
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WK,ν(z) The WhittakerW function, dimensionless
U(a, b, z) The KummerU function, dimensionless
Γ(z) The Gamma function, dimensionless
δ(z) The delta Dirac function, dimensionless.
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