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Abstract

An optimization problem is quasiconvex if the objective is quasiconvex
and the constraint set is convex. In this paper, we generalize some notion
of quasiconvex scalar optimization to quasiconvex vector optimization
and study optimality conditions. Our results contain and improve some
recent ones in the literature.

1 Introduction

In vector optimization one investigates optimal elements such as minimal,
strongly minimal, properly minimal or weakly minimal elements of a nonempty
subset of a partially ordered linear space. The problem of determining at least
one of these optimal elements, if they exist at all, is also called a vector opti-
mization problem. Problems of this type can be found not only in mathematics
but also in engineering and economics.

It is the purpose of this paper to present some optimality conditions for
constrained optimization problems with quasiconvex functions, i.e., functions
whose sublevel sets are convex. Such functions form the main class of general-
ized convex functions and are widely used in mathematical economics. There
are a lot of papers dealing with optimality conditions for constrained problems
under generalized convexity conditions (see [5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18,
19, 20, 34] for example). In particular, for quasiconvex problem, we refer the
reader to [1, 13, 14, 16, 21, 24, 26, 27, 28, 29, 30, 31].
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However, we can observe that optimality conditions do not need sublevel
sets being convex for all points in feasible sets. Employ this fact, in a recent
paper [22], the authors study optimality conditions for minimization problems
involving Plastria (or Gutiérrez) functions at a point x, i.e. its sublevel sets
are convex and the normal cone at x to the sublevel set is generated by the
Plastria (Gutiérrez) subdifferential.

But there are differentiable quasiconvex functions with the Plastria
(Gutiérrez) subdifferentials which are empty at each point. So, it may be
quite strict to be a Plastria (Gutiérrez) function at a point. Motivated by this
fact, in [36] we study a more general class of functions with sublevel sets being
convex at some points in feasible sets. We do not assume that data of prob-
lems are smooth. Thus, we use normal cones to the corresponding sublevel sets,
which are Penot’s variants of Greenberg-Pierskalla’s subdifferential introduced
in [23, 33], to present our results. We compare our results with some recent
ones using adapted subdifferentials of quasiconvex analysis like the Plastria
subdifferential [35], the infradifferential Gutiérrez subdifferential [10], and the
Greenberg-Pierskalla’s subdifferential [9].

We do not make a comparison with results using the all-purpose subdiffer-
entials of nonsmooth analysis (see [3, 23]). The reason is that these subdiffer-
entials are local, whereas the ones we use are of global characters; intermediate
notions are presented in [4, 21], and [25]. Our optimality conditions general-
ize conditions in [9, 22, 26] using normal cones or subdifferentials related to
normal cones to sublevel sets.

In this paper, we generalize our result in [36] for vector optimization context.
The organization of this paper is as follows. Section 2 contains definitions and
preliminaries needed in the sequel. Section 3 is devoted to optimality conditions
for a minimization problem with a convex constraint set. In section 4 optimality
conditions are established for the mathematical programming problem.

2 Preliminaries

Throughout the paper, let X be a normed space. For A ⊆ X intA, clA, coA
and coneA denote the interior, closure, convex hull of A and the conical hull
(called also the cone generated by A), i.e. coneA := {λx : x ∈ A, λ ∈ R+},
respectively. The distance from x ∈ X to A is dist(x, A) = inf{‖x−y‖ : y ∈ A}.
X∗ is the topological dual of X and 〈., .〉 is the duality pairing. The normal
cone at x to A, denoted by N(A, x), is defined by

N(A, x) := {x∗ ∈ X∗ : ∀u ∈ A, 〈x∗, u− x〉 ≤ 0}.
If x 	∈ A we adopt that N(A, x) = ∅. The contingent cone of A at x ∈ X,
denoted by T (A, x), is the following cone

T (A, x) := {v ∈ X : ∃(rn) → 0+, ∃(vn) → v, ∀n, x + rnvn ∈ A}.
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To see relationships between N(A, x) and T (A, x), recall that the polar cones
of cones B ⊆ X and D ⊆ X∗ are

B− := {x∗ ∈ X∗ : ∀x ∈ B, 〈x∗, x〉 ≤ 0},
D− := {x ∈ X : ∀x∗ ∈ D, 〈x∗, x〉 ≤ 0}.

Clearly N(A, x) = [clcone(A − x)]−. Setting, in the definition of T (A, x),
xn = x + rnvn, we see that

T (A, x) = {v : ∃(rn) → 0, ∃(xn) ⊆ A → x, lim
xn − x

rn
= v} ⊆ clcone(A − x).

Hence, T (A, x)− ⊇ N(A, x). Furthermore, if v ∈ T (A, x), i.e. v is of the form
lim xn−x

rn
, and x∗ ∈ N(A, x), then 〈x∗, v〉 ≤ 0. Therefore, T (A, x) ⊆ N(A, x)−.

Moreover, if A is convex then the above containments become equalities. A ⊆
X is called strictly convex at x̄ if 〈x∗, x − x̄〉 < 0 for every x ∈ A \ {x̄} and
x∗ ∈ N(A, x̄) \ {0}. If N(A, x̄) \ {0} 	= ∅, this strict convexity implies that x̄ is
an extreme point of A. The converse is not true.

Let K be a convex, pointed cone with apex at 0 and nonempty interior in
a norm space Y . The order generated by K is given by

x ≥K y if and only if x− y ∈ K,

for x, y ∈ Y . A function f from a normed space X to Y is called K-quasiconvex
if its sublevel set Lf (x) := {u ∈ X : f(u) ≤K f(x)} at x is convex for all
x ∈ X. Another equivalent statement, which is often met in the literature, is
that f is K-quasiconvex if for all x, y ∈ domf := {x ∈ X : f(x) < +∞}, all
t ∈ [0, 1], f((1− t)x + ty) ≤K max{f(x), f(y)} in the case K is a subset of Rm

and generated by m linear independent vectors.
Consider the following set-constrained multiobjective problem:

minKf(x), s.t. x ∈ C, (P)

where f : X �−→ Y and C is a subset of X.

Definition 1. The feasible point x̄ ∈ S is called efficient or Pareto optimal,
if there is no other x ∈ C such that f(x) ≤K f(x̄).

We consider the following normal-cone subdifferentials

∂νf(x̄) := N(Lf (x̄), x̄).

3 Optimality conditions for set-constrained prob-
lems

Consider the minimization problem (P) with assumption that C is convex.
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Theorem 1. Let x̄ be an efficient solution to P and an extreme point of C.
Assume that Lf(x̄) is convex, C is not reduced to {x̄} and either one of the
following conditions holds

(i) intL<
f (x̄) 	= ∅ or f is u.s.c. at a point of L<

f (x̄);

(ii) intC 	= ∅;
(iii) X is finite dimensional.

Then
∂νf(x̄) ∩ (−N(C, x̄)) 	= {0} . (1)

Proof. Since x̄ is an extreme point of C and C 	= {x̄}, the set C \ {x̄}
is convex and nonempty. As x̄ is a strict solution to (P), C \ {x̄} and Lf (x̄)
are disjoint. For (i), by the Hahn-Banach separation theorem, there exists
some c ∈ R and 0 	= u∗ ∈ X∗ such that the following inequalities hold, for all
w ∈ Lf (x̄) and x ∈ C \ {x̄} ,

〈u∗, x− x̄〉 ≥ c ≥ 〈u∗, w − x̄〉.

Since x can be arbitrarily close to x̄, we have c ≤ 0. On the other hand, since
we can take w = x̄, c ≥ 0 and hence c = 0. Therefore, the left inequality means
u∗ ∈ −N(C, x̄) and the right one means u∗ ∈ ∂νf(x̄), and the result follows.

For (ii) and (iii), we can also apply the separation theorem to get the above
inequalities for all w ∈ Lf(x̄) and x ∈ C \ {x̄}. Similar arguments complete
the proof. �

Passing to sufficient conditions, we need the following strict convexity, used
in [21] among others. Let X be a normed space. A ⊆ X is called strictly
convex at x̄ if 〈x∗, x − x̄〉 < 0 for every x ∈ A \ {x̄} and x∗ ∈ N(A, x̄) \ {0}.
Suggested by a referee, we discuss relations between this strict convexity with
some close known notions. Denote A(x) := cone(A − x). x̄ ∈ A is called an
extreme point of A if A(x̄) ∩ (−A(x̄)) = {0}, and a strictly extreme point of
A if clA(x̄) ∩ (−clA(x̄)) = {0}. x̄ ∈ A is said to be an exposed point of A if
there exists x∗ ∈ X∗ such that < x∗, x ><< x∗, x̄ > for all x ∈ A \ {x̄}, and a
strictly exposed point of A if this strict inequality holds for all x ∈ clA \ {x̄}.
Moreover, x̄ ∈ A is called strongly strictly exposed point of A provided that
x∗ satisfies additionally that if < x∗, xn >→<< x∗, x̄ > for xn ∈ clA then
xn → x. In [31] the following relations were established.

(i) Strong strict exposedness ⇒ strict exposedness ⇒ exposedness ⇒ ex-
tremeness.

(ii) A strictly exposed point is always a strictly extreme point. The con-
verse is true if X is separable and A is convex. A strictly extreme point is
incomparable with an exposed point. Example 6 of [31] gave a strictly extreme
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point which is not an exposed point. Conversely, boundary points of a disk are
exposed but not strictly extreme.

(iii) If X is finite dimensional and A is convex, the three notions of strong
strict exposedness, strict exposedness and strict extremeness are equivalent.

Now we compare with strict convexity. It is clear that A is strictly con-
vex at x̄, then this point is an extreme point. Unfortunately, strict convexity
is incomparable with other above-mentioned properties. We give illustrative
examples.

(i) The set A = {(x, y) : y > 0} ∪ {(0, 0)} in R
2 is strictly convex at (0, 0),

but this point is not strictly extreme. While (0, 0) is a strictly extreme point
of R

2
+ but this set is not strictly convex at (0, 0).

(ii) The set A in (i) is strictly convex at (0, 0), but this point is not strictly
exposed. On the other hand, (0, 0) is strongly strictly exposed point of R

2
+ but

this set is not strictly convex at (0, 0).
We have the following simple sufficient condition.

Theorem 2. A feasible point x̄ is an efficient solution of (P) if (1) is satisfied
and either of the following conditions holds

(i) either C is strictly convex at x̄ or C \ {x̄} is open;

(ii) Lf (x̄) \ {x̄} is open.

Proof. Suppose, ad absurdum, (Lf (x̄) ∩ C) \ {x̄} 	= ∅. The relation (1)
implies that there exists 0 	= u∗ ∈ X∗ such that

〈u∗, x− x̄〉 ≥ 0 ≥ 〈u∗, w − x̄〉, ∀w ∈ Lf (x̄), x ∈ C,

then 〈u∗, v − x̄〉 = 0 for any v ∈ (Lf (x̄) ∩ C) \ {x̄}. For (i), observe first that
C \ {x̄} is open implies that C is strictly convex at x̄. Indeed, if C \ {x̄} is
open, it is equal to intC. Hence 〈x∗, x − x̄〉 < 0 for every x ∈ C \ {x̄} and
x∗ ∈ N(C, x̄) \ {0}, i.e. C is strictly convex at x̄. Now we have to consider
only the case where C is strictly convex at x̄. Then, by the strict convexity,
〈−u∗, x − x̄〉 < 0 for all x ∈ C \ {x̄}, a contradiction. For (ii), let h ∈ X be
nonzero and arbitrary. As Lf(x̄) \ {x̄} is open, there exists t > 0 small enough
such that v + th ∈ Lf (x̄). Then

t〈u∗, h〉 = 〈u∗, v − x̄ + th〉 − 〈u∗, v − x̄〉 ≤ 0.

Hence u∗ = 0, again a contradiction. �

4 Optimality conditions for the mathematical

programming problem

Let us consider now the case in which the constraint set C is defined by a
finite family of inequalities, so that problem (P) turns into the mathematical
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programming problem

minimize f(x) subject to g1(x) ≤ 0, ..., gn(x) ≤ 0. (MP)

We denote g = max1≤i≤n gi, C = g−1(−∞, 0], I = {i : gi(x̄) = 0} and h =
maxi∈I gi.

Theorem 3. Assume for problem (MP) that

(i) L<
f (x̄) ∪ {x̄} and g−1

i (−∞, 0] are convex for i=1,...,n;

(ii) gi are u.s.c. at x̄ for i = 1, ..., n;

(iii) either of the following regularity conditions holds

(a) there exists k ∈ I such that Lgk (x̄) ∩ {x ∈ X : x ∈ L<
gi

(x̄), ∀i ∈
I \ {k}} 	= ∅ (Slater condition);

(b) X is complete, Lgi (x̄) is closed for each i ∈ I and R+(Δ−∏i∈I Lgi (x̄))
is a closed subspace, where Δ = {(xi)i∈I : ∀j, k ∈ I; xj = xk} is the diagonal of
XI .

(iv) either X is finite dimensional or f is u.s.c. at some point of
L<

f (x̄).

If x̄ is an efficient solution, which is an extreme point but not a single point of
the feasible set, then

∂νf(x̄) ∩
(
−
∑
i∈I

∂νgi(x̄)

)
	= {0} . (2)

This implies the following usual form, for some λ1, ..., λn ∈ R+, not all zero,
such that

0 ∈ ∂νf(x̄) +
n∑

j=0

λj∂
νgj(x̄), (3)

λjgj(x̄) = 0, j = 1, ..., n. (4)

Proof. Observe that C is convex and contained in Lh(x̄). So N(Lh(x̄), x̄) ⊆
N(C, x̄). To prove the reverse inclusion we show that T (Lh(x̄), x̄) ⊆ T (C, x̄).
By the assumed convexity we have T (Lh(x̄), x̄) = clcone(Lh(x̄) − x̄), i.e. any
v ∈ T (Lh(x̄), x̄) is of the form lim tk(xk− x̄), where tk > 0 and xk ∈ Lh(x̄). On
the other hand, let x ∈ Lh(x̄) be arbitrary. If i ∈ I and xt := x̄+ t(x− x̄), then
gi(xt) ≤ 0 for t ∈ [0, 1] by the convexity. For i 	∈ I, x̄ ∈ int g−1

i (−∞, 0] by the
assumed upper semicontinuity. So, for t > 0 small enough, gi(xt) ≤ 0. Hence
xt ∈ C. Therefore, t(x− x̄) ∈ cone(C − x̄) for any x ∈ Lh(x̄) and any t > 0. It
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follows that the above-mentioned lim tk(xk − x̄) belongs to clcone (C − x̄) =
T (C, x̄). Thus, T (Lh(x̄), x̄) ⊆ T (C, x̄), and then N(C, x̄) ⊆ N(Lh(x̄), x̄). Thus
we have equality.

In case (a) with the Slater condition, one has Lgk (x̄)∩(∩i∈I\{k}intLgi(x̄)) 	=
∅ (by the assumed upper semicontinuity) and hence, by the Moreau-Rockafellar
theorem,

N(C, x̄) = N(Lh(x̄), x̄) =
∑
i∈I

N(Lgi (x̄), x̄).

In case (b), by Theorem 4.3 of [25], we also have this relation. By (iv) we
can apply Theorem 1 to get (2). Taking λi ∈ R+ \ {0} arbitrarily for i ∈ I and
λi = 0 for i /∈ I we obtain (3) and (4). �

Theorem 4. Let f be u.s.c. and x̄ be a feasible solution of problem (MP).
Then, relation (2) implies that x̄ is an efficient solution.

Proof. Let D = h−1(−∞, 0]. Then, C ⊆ D. Observe that x̄ is a solution
to problem (MP ) if and only if L<

f (x̄) ∩ C = ∅. We shall prove a stronger
conclusion that L<

f (x̄) ∩D = ∅. Since f is u.s.c., L<
f (x̄) is open. Note that we

always have
N(D, x̄) ⊇

∑
i∈I

N(Lgi (x̄), x̄) =
∑
i∈I

∂νgi(x̄).

Now applying Theorem 2, we see that x̄ is a solution to the following set-
constrained problem

minimize f(x) subject to x ∈ D.

This completes the proof. �
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