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Abstract

We formulated a binary integer program to model the assignment
problem stated as follows: the elements of given finite sets should be
assigned to the compartments of a tiling (with finite number of compart-
ments) such that the costs of having adjacent elements from different
sets are minimized. We defined that two compartments are adjacent if
and only if they share a common edge. In this paper, we considered the
regular tilings of regular polygons in Euclidean plane.

An assignment problem can have weighted and nonweighted neigh-
borhood constraints. Weights ωg and ωg are assigned to sets g and g,
respectively. The cost of having an element from set g adjacent to an
element of set g is computed as |ωg − ωg|. In an assignment problem
with weighted neighborhood constraint, the higher adjacency costs are
minimized first.
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In an assignment problem with nonweighted neighborhood constraint,
the costs of the adjacencies between elements of different sets are simulta-
neously minimized, and the weights are considered as dummy only. The
effect of the dummy weights can be removed by permuting the weights
in the objective function of the binary integer program. The binary inte-
ger program associated with the assignment problem with nonweighted
neighborhood constraint is computationally more expensive than the as-
signment problem with weighted constraint.

We can represent the tilings as graphs and the assignment problems as
linearized binary integer programs. We presented illustrative examples
showing the optimal solutions; however, optimal solutions may not be
unique.

1 Introduction

In an assignment problem, elements of set A are assigned to the elements of set
B subject to some criteria or constraints. The members of A can be persons,
objects, machines or manufacturing plants; and B can contain tasks, locations
or other objects. However, some constraints may exist because not all elements
of A can be assigned to an element in B, or selected elements of A are best
suited to be assigned to a specific element in B. This type of decision-making
problem can be solved using mathematical programming, in particular, binary
integer programming [7, 6]. Assignment problems can be seen in real-world
scenarios such as assignment of workers to specific jobs, assignment of goods
to storage areas in grocery stores, assignment of crops to certain areas in a
plantation, assignment of patients with contagious diseases to hospital wards,
or assignment of computers to connected network clusters.

In this study, we modeled the assignment problem of arranging elements
that come from different finite sets into the compartments of a given tiling in
Euclidean plane. We supposed that the tiling has a finite number of compart-
ments. Each element is assigned to a compartment subject to the constraint
that the sum of the costs of the adjacencies of the elements from different sets
is minimized. The tilings that were considered are regular tilings of regular
polygons, specifically 36 (triangular), 44 (square) and 63 (hexagonal) tilings
[4, 3]. We defined that two elements are adjacent if they were assigned to ad-
jacent compartments, and that two compartments are adjacent if and only if
they share a common edge. For simplicity, we assumed that the total number
of elements to be assigned is less than or equal to the number of compartments,
and at most one element can be assigned to a compartment.

An assignment problem can have weighted and nonweighted neighborhood
constraints. Weights ωg and ωg are assigned to sets g and g, respectively. The
cost of having an element from set g adjacent to an element of set g is computed
as |ωg − ωg|. In an assignment problem with weighted neighborhood constraint,
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we prioritize to minimize first the costs with higher value. In an assignment
problem with nonweighted neighborhood constraint, the costs of the adjacencies
between elements of different sets are simultaneously minimized without any
priority, that is, we simply want that the elements from different sets are not
adjacent.

Arranging the elements of sets in a tiling may be done manually using brute
force (enumeration) if the number of elements and the number of compartments
being considered are small. However, if the numbers of elements of the sets
and compartments become large, then determining the optimal arrangement
may be impractical for manual computation. The total number of possible
arrangements (optimal and non-optimal) is equal to ζ!

N1 !N2 !...Nk!(ζ−Ntotal)!
where

ζ is the number of compartments, Ng is the number of elements in set g for
g = 1, 2, . . . , k and Ntotal = N1 + N2 + . . . + Nk. Hence, we formulated binary
integer programs that may help achieve the optimal solutions systematically.

1.1 Related Works

This study is related to location problems. Esteves et al. [2] were able to
create a mathematical model that is expected to help solve the problem of
overpopulation of bees by determining the optimal distribution of bee colonies
in a specific location. They used mixed integer programming in formulating
their model while they used graphs to visually represent the environment where
the beehives will be distributed.

The assignment problem with nonweighted neighborhood constraint is re-
lated to graph coloring in which minimum number of colors are needed to paint
a map with the restriction of having no same colors that are adjacent. In 2010,
the paper of Diaby and Moustapha [1] used integer programming technique to
solve graph coloring problems.

De Lara and Rabajante [5] presented a model for an assignment problem
with weighted neighborhood constraint in 44 tilings. We extended their study
to include nonweighted neighborhood constraint and to other tilings. In their
paper, they came up with the following model (see Model Formulation section
for the definition of parameters and variables):
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Minimize

r∑
i=1

c−1∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1)

∣∣∣∣∣+
r−1∑
i=1

c∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxg(i+1)j

∣∣∣∣∣
subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 2: For g = 1, 2, . . . , k,

r∑
i=1

c∑
j=1

xgij = Ng

Constraint 3: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}

1.2 Linear Programming

A linear program is one of the optimization models which has linear objective
and constraint expressions. This technique is of the form

Optimize f(x1, x2, . . . , xn)

subject to

g1(x1, x2, . . . , xn)
g2(x1, x2, . . . , xn)

...
gn(x1, x2, . . . , xn)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤
=
≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1

b2

...
bn

Integer linear programs are linear programs in which the variables are
integer-valued. Binary integer linear programs require that the variables be
restricted to 0 or 1 only. Mixed integer linear programs may have integer and
real-valued variables.
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1.3 Conversion of NonLinear Objective Function to a Lin-
ear Program

If the objective function of a mathematical program is nonlinear such as ab-
solute value function, then, if applicable, we should linearized it so as not to
violate the general assumptions of linear programming.

For example, the objective function

Minimize |f(x1 , x2, . . . , xn)|
can be transformed into

Minimize α

subject to
f(x1, x2, . . . , xn) − α ≤ 0
−f(x1 , x2, . . . , xn) − α ≤ 0
α ∈ R

⊕.

2 Model Formulation

2.1 Parameters and Variables

• Let the binary-valued decision variables be

xgij =

⎧⎨
⎩

0, if an element from set g is not assigned to the
compartment at the i−th row and j−th column

1, otherwise

for i = 1, 2, . . . , r where r is the number of rows, and j = 1, 2, . . . , c where
c is the number of columns. The decision variable xgij is like an “on/off”
variable — it will be “on” (that is equal to 1) if an element of set g is
assigned to the ij-th compartment, and it will be “off” (that is equal to
0) if no element from set g is assigned to the ij-th compartment.

• Let Ng be the number of elements in set g for g = 1, 2, . . . , k where k is
the number of sets. Let ωg be the weight given to set g.

• Suppose a1, a2, . . . , ak, b1, b2, . . . , bk be the dummy weights associated to
the decision variables y1, y2, . . . , yk, z1, z2, . . . , zk, respectively, then define
the relation ρ(O�) as

ρ(O�)(|(a1y1 + a2y2 + · · ·+ akyk) − (b1z1 + b2z2 + · · ·+ bkzk)|)
=
∣∣κ1(O�)

∣∣+ ∣∣κ2(O�)

∣∣+ · · ·+ ∣∣κk(O�)

∣∣
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where

κ1(O�) = (a1y1 + a2y2 + · · ·+ ak−1yk−1 + akyk)
−(b1z1 + b2z2 + · · ·+ bk−1zk−1 + bkzk)

κ2(O�) = (a2y1 + a3y2 + · · ·+ akyk−1 + a1yk)
−(b2z1 + b3z2 + · · ·+ bkzk−1 + b1zk)

κ3(O�) = (a3y1 + a4y2 + · · ·+ a1yk−1 + a2yk)
−(b3z1 + b4z2 + · · ·+ b1zk−1 + b2zk)

...
κ(k−1)(O�) = (ak−1y1 + aky2 + · · ·+ ak−3yk−1 + ak−2yk)

−(bk−1z1 + bkz2 + · · ·+ bk−3zk−1 + bk−2zk)
κk(O�) = (aky1 + a1y2 + · · ·+ ak−2yk−1 + ak−1yk)

−(bkz1 + b1z2 + · · ·+ bk−2zk−1 + bk−1zk).

The relation ρ(O�) denotes the circular shift permutation of the dummy
weights in objective function term O�. This relation was used in modeling
an assignment problem with nonweighted neighborhood constraint.

2.2 Assignment Problem with Weighted
Neighborhood Constraint

For an assignment problem with weighted neighborhood constraint, we prior-
itize to minimize first the adjacency costs with higher value. For example, if
we have three sets, say set 1 with weight equal to 1, set 2 with weight equal
to 2 and set 3 with weight equal to 3, then we prioritize to minimize first the
adjacency between set 1 and set 3 (with cost equal to 2) before minimizing the
adjacencies between set 1 and set 2 (with cost equal to 1) and between set 2
and set 3 (with cost equal to 1).

We can introduce dummy compartments so that each row has equal number
of compartments and each column also has equal number of compartments,
see Figures 4 and 5 for illustration. We used this approach to simplify our
summation notations in the binary integer programs.
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2.2.1 In 36 Tiling (Model 1)

For the 36 tiling, two types of tilings were considered — one that starts with
adjacent columnar compartments (Model 1) and the other starts with non-
adjacent columnar compartments (Model 2). See Figures 6 and 7 for illustra-
tion.

The tilings can be transformed into graphs in which the nodes represent the
compartments and the edges represent the adjacencies among compartments,
see Figure 8 for illustration. Now, the following is the formulated nonlinear
binary integer model for the assignment problem with weighted neighborhood
constraint in 36 tiling starting with adjacent columnar compartments:

Minimize

r∑
i=1

c−1∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1)

∣∣∣∣∣ (O1)

+
�r/2�−1∑

i=1

�c/2�∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxg(2i)(2j) −
k∑

g=1

ωgxg(2i+1)(2j)

∣∣∣∣∣ (O2)
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+
�r/2�∑
i=1

�c/2�∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxg(2i−1)(2j−1) −
k∑

g=1

ωgxg(2i)(2j−1)

∣∣∣∣∣ (O3)

subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 2: For g = 1, 2, . . . , k,
r∑

i=1

c∑
j=1

xgij = Ng

Constraint 3: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}
The term O1 in the objective function represents the costs of the row adja-

cencies. The term O2 represents the costs of the adjacencies in even columns,
while the term O3 represents the costs of the adjacencies in odd columns. See
Figure 9 for illustration.

The first constraint guarantees that at most one element will be assigned
to a compartment and that dummy compartments will not have any assigned
element. The second constraint guarantees that each element will be assigned
to a compartment, while the third constraint assures that the decision variable
xgij is binary-valued.

Notice that the objective function is composed of expressions in absolute
value. We can use Integer Linear Programming techniques to solve the nonlin-
ear model by linearizing the objective function. The following is the linearized
binary integer program:
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Minimize

r∑
i=1

c−1∑
j=1

αij +
�r/2�−1∑

i=1

�c/2�∑
j=1

β(2i)(2j) +
�r/2�∑
i=1

�c/2�∑
j=1

γ(2i−1)(2j−1)

subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c − 1,

k∑
g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1) − αij ≤ 0

Constraint 2: For i = 1, 2, . . . , r and j = 1, 2, . . . , c − 1,

−
k∑

g=1

ωgxgij +
k∑

g=1

ωgxgi(j+1) − αij ≤ 0

Constraint 3: For i = 1, 2, . . . , �r/2� − 1 and j = 1, 2, . . . , �c/2�,
k∑

g=1

ωgxg(2i)(2j) −
k∑

g=1

ωgxg(2i+1)(2j) − β(2i)(2j) ≤ 0

Constraint 4: For i = 1, 2, . . . , �r/2� − 1 and j = 1, 2, . . . , �c/2�,

−
k∑

g=1

ωgxg(2i)(2j) +
k∑

g=1

ωgxg(2i+1)(2j) − β(2i)(2j) ≤ 0

Constraint 5: For i = 1, 2, . . . , �r/2� and j = 1, 2, . . . , �c/2�,
k∑

g=1

ωgxg(2i−1)(2j−1) −
k∑

g=1

ωgxg(2i)(2j−1) − γ(2i−1)(2j−1) ≤ 0

Constraint 6: For i = 1, 2, . . . , �r/2� and j = 1, 2, . . . , �c/2�,

−
k∑

g=1

ωgxg(2i−1)(2j−1) +
k∑

g=1

ωgxg(2i)(2j−1) − γ(2i−1)(2j−1) ≤ 0

Constraint 7: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise
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Constraint 8: For g = 1, 2, . . . , k,

r∑
i=1

c∑
j=1

xgij = Ng

Constraint 9: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}

The term O1 in the objective function of the nonlinear binary integer pro-
gram was transformed to constraints 1 and 2 in the linearized program. The
term O2 was transformed to constraints 3 and 4, and the term O3 to con-
straints 5 and 6. Constraints 1, 2, . . ., 9 has r(c−1), r(c−1), (�r/2�−1) �c/2�,
(�r/2� − 1) �c/2�, �r/2� �c/2�, �r/2� �c/2�, rc, k and rck subconstraints, re-
spectively.

2.2.2 In 36 Tiling (Model 2)

The following are the sample graph illustration (Figure 10) and the formu-
lated nonlinear binary integer model for the assignment problem with weighted
neighborhood constraint in 36 tiling starting with non-adjacent columnar com-
partments:

Minimize

r∑
i=1

c−1∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1)

∣∣∣∣∣ (O1)

+
�r/2�−1∑

i=1

�c/2�∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxg(2i)(2j−1) −
k∑

g=1

ωgxg(2i+1)(2j−1)

∣∣∣∣∣ (O2)
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+
�r/2�∑
i=1

�c/2�∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxg(2i−1)(2j) −
k∑

g=1

ωgxg(2i)(2j)

∣∣∣∣∣ (O3)

subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 2: For g = 1, 2, . . . , k,
r∑

i=1

c∑
j=1

xgij = Ng

Constraint 3: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}
The term O1 in the objective function represents the costs of the row adja-

cencies. The term O2 represents the costs of the adjacencies in odd columns,
while the term O3 represents the costs of the adjacencies in even columns. We
do the same process as in 36 Tiling (Model 1) to linearize the objective function.

2.2.3 In 63 Tiling

We define three types of adjacencies in a 63 tiling — row adjacency, column
adjacency and diagonal adjacency, see Figure 11 for illustration. The following
are the sample graph illustration (Figure 12) and the formulated nonlinear
binary integer model for the assignment problem with weighted neighborhood
constraint in 63 tiling:

Minimize
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r∑
i=1

c−1∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1)

∣∣∣∣∣ (O1)

+
r−1∑
i=1

c∑
j=1

∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxg(i+1)j

∣∣∣∣∣ (O2)

+
r−1∑
i=1

c∑
j=2

∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxg(i+1)(j−1)

∣∣∣∣∣ (O3)

subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 2: For g = 1, 2, . . . , k,

r∑
i=1

c∑
j=1

xgij = Ng

Constraint 3: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}

The term O1 in the objective function represents the costs of the row ad-
jacencies. The term O2 represents the costs of the column adjacencies, while
the term O3 represents the costs of the diagonal adjacencies. We do the same
process as in 36 Tiling (Model 1) to linearize the objective function.

2.3 Assignment Problem with Nonweighted
Neighborhood Constraint

For an assignment problem with nonweighted neighborhood constraint, we si-
multaneously minimize the costs of the adjacencies between elements from dif-
ferent sets without considering any priority. That is, we only want to have
the least number of adjacencies between elements from different sets without
considering any weights. However, we cannot just remove the weights or let the
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weights assigned to all sets be equal, that is |ωg − ωg| = 0 for any set g and g,
because this implies that we do not have any cost to minimize. To remedy this,
we let the assigned weights ωg for any set g to be considered as dummy, but
we will later eliminate the effect of the dummy weights by using the relation
ρ(O�). For simplicity, we let ωg = g.

For example, refer to Figure 13, say we have sets s1, s2 and s3. In the first
permutation, the adjacencies between elements of s1 and s3 should be mini-
mized first because they have the largest adjacency cost (cost = 2). In the sec-
ond permutation, the adjacencies between elements of s1 and s2 should be mini-
mized first because they have the largest adjacency cost (cost = 2). In the third
permutation, the adjacencies between elements of s2 and s3 should be mini-
mized first because they have the largest adjacency cost (cost = 2). By doing
this circular shift permutation, we eliminate the effect of the dummy weights.
However, this strategy would make the linearized binary integer model associ-
ated to an assignment problem with nonweighted neighborhood constraint to
have more subconstraints and to be computationally expensive than the model
associated to an assignment problem with weighted neighborhood constraint.

2.3.1 In 36 Tiling (Model 1)

The following is the formulated nonlinear binary integer model for the assign-
ment problem with nonweighted neighborhood constraint in 36 tiling starting
with adjacent columnar compartments:

Minimize

r∑
i=1

c−1∑
j=1

ρ(O1)

(∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1)

∣∣∣∣∣
)

(O1)

+
�r/2�−1∑

i=1

�c/2�∑
j=1

ρ(O2)

(∣∣∣∣∣
k∑

g=1

ωgxg(2i)(2j) −
k∑

g=1

ωgxg(2i+1)(2j)

∣∣∣∣∣
)

(O2)
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+
�r/2�∑
i=1

�c/2�∑
j=1

ρ(O3)

(∣∣∣∣∣
k∑

g=1

ωgxg(2i−1)(2j−1) −
k∑

g=1

ωgxg(2i)(2j−1)

∣∣∣∣∣
)

(O3)

subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 2: For g = 1, 2, . . . , k,

r∑
i=1

c∑
j=1

xgij = Ng

Constraint 3: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}

The term O1 in the objective function represents the costs of the row adja-
cencies. The term O2 represents the costs of the adjacencies in even columns,
while the term O3 represents the costs of the adjacencies in odd columns.

The objective function is composed of expressions in absolute value. Now,
the following is the linearized binary integer program:

Minimize

r∑
i=1

c−1∑
j=1

k∑
h=1

αhij +
�r/2�−1∑

i=1

�c/2�∑
j=1

k∑
h=1

βh(2i)(2j) +
�r/2�∑
i=1

�c/2�∑
j=1

k∑
h=1

γh(2i−1)(2j−1)

subject to

Constraint 1: For h = 1, 2, . . . , k, i = 1, 2, . . . , r and j = 1, 2, . . . , c− 1,

κh(O1) − αhij ≤ 0

Constraint 2: For h = 1, 2, . . . , k, i = 1, 2, . . . , r and j = 1, 2, . . . , c− 1,

−κh(O1) − αhij ≤ 0
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Constraint 3: For h = 1, 2, . . . , k, i = 1, 2, . . . , �r/2� − 1 and
j = 1, 2, . . . , �c/2�,

κh(O2) − βh(2i)(2j) ≤ 0

Constraint 4: For h = 1, 2, . . . , k, i = 1, 2, . . . , �r/2� − 1 and
j = 1, 2, . . . , �c/2�,

−κh(O2) − βh(2i)(2j) ≤ 0

Constraint 5: For h = 1, 2, . . . , k, i = 1, 2, . . . , �r/2� and j = 1, 2, . . . , �c/2�,

κh(O3) − γh(2i−1)(2j−1) ≤ 0

Constraint 6: For h = 1, 2, . . . , k, i = 1, 2, . . . , �r/2� and j = 1, 2, . . . , �c/2�,

−κh(O3) − γh(2i−1)(2j−1) ≤ 0

Constraint 7: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 8: For g = 1, 2, . . . , k,

r∑
i=1

c∑
j=1

xgij = Ng

Constraint 9: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}

The term O1 in the objective function of the nonlinear binary integer pro-
gram was transformed to constraints 1 and 2 in the linearized program. The
term O2 was transformed to constraints 3 and 4, and the term O3 to constraints
5 and 6. Constraints 1, 2, . . ., 9 has kr(c − 1), kr(c − 1), k(�r/2� − 1) �c/2�,
k(�r/2� − 1) �c/2�, k �r/2� �c/2�, k �r/2� �c/2�, rc, k and rck subconstraints,
respectively.

2.3.2 In 36 Tiling (Model 2)

The following is the formulated nonlinear binary integer model for the assign-
ment problem with nonweighted neighborhood constraint in 36 tiling starting
with non-adjacent columnar compartments:

Minimize
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r∑
i=1

c−1∑
j=1

ρ(O1)

(∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1)

∣∣∣∣∣
)

(O1)

+
�r/2�−1∑

i=1

�c/2�∑
j=1

ρ(O2)

(∣∣∣∣∣
k∑

g=1

ωgxg(2i)(2j−1) −
k∑

g=1

ωgxg(2i+1)(2j−1)

∣∣∣∣∣
)

(O2)

+
�r/2�∑
i=1

�c/2�∑
j=1

ρ(O3)

(∣∣∣∣∣
k∑

g=1

ωgxg(2i−1)(2j) −
k∑

g=1

ωgxg(2i)(2j)

∣∣∣∣∣
)

(O3)

subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 2: For g = 1, 2, . . . , k,
r∑

i=1

c∑
j=1

xgij = Ng

Constraint 3: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}
The term O1 in the objective function represents the costs of the row adja-

cencies. The term O2 represents the costs of the adjacencies in odd columns,
while the term O3 represents the costs of the adjacencies in even columns. We
do the same process as in 36 Tiling (Model 1) to linearize the objective function.

2.3.3 In 44 Tiling

The following is the formulated nonlinear binary integer model for the assign-
ment problem with nonweighted neighborhood constraint in 44 tiling:

Minimize

r∑
i=1

c−1∑
j=1

ρ(O1)

(∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1)

∣∣∣∣∣
)

(O1)
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+
r−1∑
i=1

c∑
j=1

ρ(O2)

(∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxg(i+1)j

∣∣∣∣∣
)

(O2)

subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 2: For g = 1, 2, . . . , k,

r∑
i=1

c∑
j=1

xgij = Ng

Constraint 3: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}

The term O1 in the objective function represents the costs of the row adja-
cencies, while the term O2 represents the costs of the column adjacencies, see
Figure 14 for illustration. We do the same process as in 36 Tiling (Model 1) to
linearize the objective function.

2.3.4 In 63 Tiling

The following is the formulated nonlinear binary integer model for the assign-
ment problem with nonweighted neighborhood constraint in 63 tiling:
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Minimize

r∑
i=1

c−1∑
j=1

ρ(O1)

(∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxgi(j+1)

∣∣∣∣∣
)

(O1)

+
r−1∑
i=1

c∑
j=1

ρ(O2)

(∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxg(i+1)j

∣∣∣∣∣
)

(O2)

+
r−1∑
i=1

c∑
j=2

ρ(O3)

(∣∣∣∣∣
k∑

g=1

ωgxgij −
k∑

g=1

ωgxg(i+1)(j−1)

∣∣∣∣∣
)

(O3)

subject to

Constraint 1: For i = 1, 2, . . . , r and j = 1, 2, . . . , c,

k∑
g=1

xgij

{
= 0, if ij−th compartment is a dummy compartment
≤ 1, otherwise

Constraint 2: For g = 1, 2, . . . , k,

r∑
i=1

c∑
j=1

xgij = Ng

Constraint 3: For i = 1, 2, . . . , r, j = 1, 2, . . . , c and g = 1, 2, . . . , k,

xgij ∈ {0, 1}

The term O1 in the objective function represents the costs of the row ad-
jacencies. The term O2 represents the costs of the column adjacencies, while
the term O3 represents the costs of the diagonal adjacencies. We do the same
process as in 36 Tiling (Model 1) to linearize the objective function.

3 Illustrative Examples

Let us suppose there are three groups and denote G1, G2 and G3 to be elements
from Group 1, Group 2 and Group 3, respectively. The distribution of elements
for each group is shown in Table 1.
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Table 1: Distribution of elements per group.
Group Number of elements

Group 1 3
Group 2 4
Group 3 5

Now we want to assign the members of the given groups to the compart-
ments of a tiling such that the costs of having adjacent elements from different
sets are minimized. Assume ωg = g.

The tilings to be considered for assignment problem with weighted neigh-
borhood constraint are shown in Figures 15 and 16. The tilings to be considered
for assignment problem with nonweighted neighborhood constraint are shown
in Figures 17 and 18.

The optimal solutions (not necessarily unique) to our illustrative examples
are shown in Figures 19-22. The optimal solutions were determined using
General Algebraic Modeling System (GAMS) version 23.7.

4 Summary

In this study, binary integer models were formulated for the assignment problem
stated as: given a finite number of k sets and finite number of M compartments
of a regular polygonal tiling, each Ng element in set g (g = 1, 2, . . . , k) should
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be arranged in the polygonal tiling such that N1 + N2 + · · · + Nk ≤ M and
the costs of having adjacent elements from different sets are minimized. Two
neigborhood constraints were considered — weighted and nonweighted. We
used the idea of circular shift permutation to model the assignment problems
with nonweighted neighborhood constraint. The formulated binary integer pro-
grams were linearized, i.e. transformed to linear programming models, since
the objective functions have absolute value expressions. This study can be
extended to include other kinds of adjacencies and other types of tilings.
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